• español
    • English
    • español
    • English
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   TITULA home
    • Universidad Europea de Madrid
    • Escuela de Arquitectura, Ingeniería y Diseño
    • Grado
    • View Item
    •   TITULA home
    • Universidad Europea de Madrid
    • Escuela de Arquitectura, Ingeniería y Diseño
    • Grado
    • View Item

    Autonomous VTOL tail-sitter for precision crop health monitoring

    Author/s: Martínez Lluís, Manuel
    Advisor/s: Padrón Nápoles, Víctor Manuel
    Keyword/s: Precision agriculture; 3D printing; Autonomous UAV; VTOL Tail-sitter; Multispectral imaging
    Degree: Grado en Ingeniería Aeroespacial
    Date of defense: 2024-07
    Type of content: TFG
    URI: https://hdl.handle.net/20.500.12880/9271
    Abstract:
    Precision agriculture is undergoing a transformative shift towards maximizing crop yield while minimizing resource consumption. Traditional methods of crop monitoring often lack accuracy and are labour-intensive. The integration of UAVs equipped with multispectral cameras has revolutionized this field, offering a non-invasive, efficient means of surveying agricultural landscapes to perceive detailed plant health information. The primary objective is to create a drone capable of autonomously executing flight missions from take-off to landing, with minimum interventions required from the operator. By harnessing the power of multispectral imagery, the drone facilitates precise monitoring of crop health parameters, enabling farmers to make informed decisions regarding irrigation, fertilization, and pest control strategies. Methodologically, the project follows a systematic approach encompassing design, 3D printing, integration of electronics, and development of an autonomous flight system. Results demonstrate the successful creation of an autonomous VTOL tail-sitter drone capable of efficiently capturing multispectral data. In conclusion, this project contributes to the advancement of precision agriculture by offering a robust and efficient tool for crop monitoring and management. The fully autonomous capabilities of the drone, coupled with its ability to provide actionable insights through multispectral imagery, hold great promise for enhancing agricultural productivity and sustainability.
    Export: Exportar a MendeleyExportar a RefWorksExportar a EndNoteExportar a RISExportar a BibTeX
    Show full item record

    Files in this item

    ADOBE PDF
    Name: TFG_ManuelMartinezLluis.pdf
    Size: 4.240Mb
    Format: PDF
    Type of content: TFG

    Collections

    • Grado
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    TITULA. Repositorio de Proyectos Fin de titulación

    © Universidad Europea de Madrid - Universidad privada | email: titula_rep@universidadeuropea.es | All rights reserved

     

     

    Browse

    All of TITULACommunities and collectionsAuthors and advisorsTitlesKeywordsDegreesThis CollectionAuthors and advisorsTitlesKeywordsDegrees

    Information And Help

    Frequently Asked QuestionsSearch projectsContact

    TITULA. Repositorio de Proyectos Fin de titulación

    © Universidad Europea de Madrid - Universidad privada | email: titula_rep@universidadeuropea.es | All rights reserved