• español
    • English
    • español
    • English
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   TITULA principal
    • Universidad Europea de Madrid
    • Escuela de Arquitectura, Ingeniería y Diseño
    • Máster
    • Ver ítem
    •   TITULA principal
    • Universidad Europea de Madrid
    • Escuela de Arquitectura, Ingeniería y Diseño
    • Máster
    • Ver ítem

    Deep-Learning Based Multiple-Model Bayesian Architecture for Spacecraft Fault Estimation

    Autor/es: Jado Puente, Rocío
    Director/es: González Juárez, Daniel
    Palabra/s clave: Aprendizaje profundo; Bayesiano; Estimación fallos; Aeronaves
    Titulación: Máster Universitario en Ingeniería Aeronáutica
    Fecha de defensa: 2023-09
    Tipo de contenido: TFM
    URI: https://hdl.handle.net/20.500.12880/6761
    Resumen:
    This thesis presents recent findings regarding the performance of an intelligent architecture designed for spacecraft fault estimation. The approach incorporates a collection of systematically organized autoencoders within a Bayesian framework, enabling early detection and classification of various spacecraft faults such as reaction-wheel damage, sensor faults, and power system degradation. To assess the effectiveness of this architecture, a range of performance metrics is employed. Through extensive numerical simulations and in-lab experimental testing utilizing a dedicated spacecraft testbed, the capabilities and accuracy of the proposed intelligent architecture are analyzed. These evaluations provide valuable insights into the architecture’s ability to detect and classify different types of faults in a spacecraft system. The study has successfully implemented an intelligent architecture for detecting and classifying faults in spacecraft. The architecture was analyzed through numerical simulations and experimental tests, demonstrating enhanced early detection capabilities. The incorporation of autoencoders and Bayesian methods proved to be a powerful combination, allowing the architecture to effectively capture and learn from complex spacecraft system dynamics and detect various types of faults. This research presents an advanced and reliable approach to early fault detection and classification in spacecraft systems, highlighting the potential of the intelligent architecture and paving the way for future developments in the field.
    Exportar: Exportar a MendeleyExportar a RefWorksExportar a EndNoteExportar a RISExportar a BibTeX
    Mostrar el registro completo del ítem

    Ficheros en el ítem

    ADOBE PDF
    Nombre: tfm_RocioJadoPuente.pdf
    Tamaño: 8.336Mb
    Formato: PDF
    Tipo de contenido: TFM

    Colecciones

    • Máster
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    TITULA. Repositorio de Proyectos Fin de titulación

    © Universidad Europea de Madrid - Universidad privada | email: titula_rep@universidadeuropea.es | Todos los derechos reservados

     

     

    Listar

    Todo TITULAComunidades y coleccionesAutores y directoresTítulosPalabras claveTitulacionesEsta colecciónAutores y directoresTítulosPalabras claveTitulaciones

    Información y ayuda

    Preguntas frecuentesBuscar proyectosContacto

    TITULA. Repositorio de Proyectos Fin de titulación

    © Universidad Europea de Madrid - Universidad privada | email: titula_rep@universidadeuropea.es | Todos los derechos reservados