Mostrar el registro sencillo del ítem

dc.contributor.advisorPeña Chilet, María del Carmen
dc.contributor.authorPrado Zamora, María del Carmen
dc.date.accessioned2023-06-22T07:50:17Z
dc.date.available2023-06-22T07:50:17Z
dc.date.issued2022-11
dc.identifier.citationPrado Zamora, M. C. (2022). Análisis mecanístico de sarcoma de células claras del riñón para el reposicionamiento racional de fármacos mediante machine learning [Trabajo Fin de Estudios, Universidad Europea de Madrid]. Repositorio de Trabajos Fin de Estudios TITULAes
dc.identifier.urihttps://hdl.handle.net/20.500.12880/5123
dc.description.abstractLos estudios de expresión génica suelen estar basados en cuantificaciones de la expresión y en anotaciones que tienen en cuenta la distribución de los genes en grupos funcionales. Los análisis mecanísticos añaden información más cercana a la biología de sistemas, con ello se intenta modelizar, no sólo la presencia de los factores de estudio, sino también sus interacciones de un modo dinámico. El paquete Hipathia, que fue desarrollado y publicado por el Departamento de Genómica Computacional del Centro de Investigación Príncipe Felipe de Valencia, y actualmente sigue en desarrollo continuo por el Área de Bioinformática Clínica del Hospital Virgen del Rocío de Sevilla, analiza la expresión génica con un enfoque mecanístico. Calcula activaciones funcionales mediante un algoritmo iterativo que modeliza la transducción de señal en las rutas de señalización biológica. Con esta aproximación, hemos re analizado un set de datos de expresión génica de Sarcoma de Células Claras del Riñón depositado en un repositorio público, y hemos podido concluir que, si bién los genes de la ruta de señalización de PI3K/Akt se encuentran sobreexpresados, es posible que dicha sobreexpresión no implique una activación de las funciones celulares controladas por dicha ruta. El mapa de enfermedad obtenido de la activación diferencial de circuitos de señalización celular sirve como partida de un modelo de Machine Learning de tipo Random Forest Multi Output para identificar Genes Diana de Fármacos aprobados por humanos, y para seleccionar posibles fármacos candidatos al reposicionamiento para Sarcoma de Células Claras del Riñón.es
dc.language.isospaes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionales
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.titleAnálisis mecanístico de sarcoma de células claras del riñón para el reposicionamiento racional de fármacos mediante machine learninges
dc.typeTFMes
dc.description.affiliationUniversidad Europea de Madrides
dc.description.degreeMáster Universitario en Bioinformáticaes
dc.rights.accessRightsopenAccesses
dc.subject.keywordTranscriptómicaes
dc.subject.keywordModelos mecanísticoses
dc.subject.keywordMapa de enfermedades
dc.subject.keywordMachine learninges
dc.subject.keywordReposicionamiento de fármacoses
dc.description.methodologyVirtual


Ficheros en el ítem

ADOBE PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem