Mostrar el registro sencillo del ítem

dc.contributor.advisorRamírez Lizán, Carlos
dc.contributor.authorNeira Voces, Pablo 
dc.date.accessioned2022-12-01T22:16:33Z
dc.date.available2022-12-01T22:16:33Z
dc.date.issued2022-06
dc.identifier.citationNeira Voces, P. (2022). Detección de accidentes de tráfico en tiempo real mediante redes neuronales convolucionales [Trabajo Fin de Estudios, Universidad Europea de Madrid]. Repositorio de Trabajos Fin de Estudios TITULAes
dc.identifier.urihttps://hdl.handle.net/20.500.12880/3419
dc.description.abstractLos accidentes de tráfico suponen una de las principales causas de muerte a nivel mundial. Sobre esto, gobiernos estatales y autoridades sanitarias han reflexionado en múltiples ocasiones intentando prevenir esta problemática. No obstante, las mejoras son leves, si es que existen. En este contexto, este proyecto pretende orientar el problema desde un enfoque revolucionario basado en disminuir los daños ocasionados por los accidentes de tráfico, ya que, se considera que la prevención de los mismos es una labor complicada. Además, los proyectos con este foco no están generando resultados. Por este motivo, se han empleado las tecnologías que ofrece la inteligencia artificial con el objetivo de lograr identificar de forma automática y en tiempo real los accidentes de tráfico. Para ello, se ha aplicado la detección de objetos, basada en el aprendizaje profundo para entrenar una red neuronal que lleve a cabo esta funcionalidad. Todo esto pretende emplearse con el fin de reducir los tiempos de espera de atención sanitaria a las víctimas de accidentes de tráfico. De esta forma, con total seguridad se reducirá el impacto mortal de los mismos, considerando que la consecución de estos sucesos es inevitable.es
dc.language.isospaes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionales
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es
dc.titleDetección de accidentes de tráfico en tiempo real mediante redes neuronales convolucionaleses
dc.typeTFGes
dc.description.affiliationUniversidad Europea de Madrides
dc.description.degreeGrado en Ingeniería Matemática Aplicada al Análisis de Datos (Data Science)es
dc.rights.accessRightsopenAccesses
dc.subject.keywordInteligencia artificiales
dc.subject.keywordDetección de objetos en tiempo reales
dc.subject.keywordRedes neuronaleses
dc.subject.keywordAccidentees
dc.subject.keywordDemora en la atención sanitariaes
dc.description.methodologyPresenciales


Ficheros en el ítem

ADOBE PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem