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II Abstract

This study focuses on predicting aircraft emissions, specifically targeting carbon monoxide (CO) and ni-
trogen oxides (NOx ), originating from gas turbine engines. This prediction is based on a comprehensive flue
gas emissions dataset, which incorporates environmental and process variables spanning a duration of five
years.

Motivated by global concerns about environmental degradation due to escalating energy demands, this
research delves into delineating the current state of emissions generated by gas turbines within the aero-
nautical industry, understanding the combustion process’s influence on shaping emissions, exploring data
analysis methodologies applicable in aviation and implementing predictive models for emissions estima-
tion. Emphasis is placed on Predictive Emission Monitoring Systems (PEMS) due to their widespread use in
emissions monitoring.

Exploratory Data Analysis (EDA) reveals intricate relationships between ambient variables and gas tur-
bine parameters, emphasizing substantial correlations with emissions. Robust predictive models, integrating
feature engineering techniques like outlier treatment and variable selection, significantly enhance emissions
prediction, recognizing the need for filtering due to extensive data dispersion.

Normalized selected variables, including ambient temperature and humidity, turbine inlet temperature
and compressor discharge pressure, are utilized for CO and NOx emissions prediction. Employing GRU and
1D CNN models demonstrates 1D CNN’s superior performance in predicting pollutants, contrary to conven-
tional recommendations, with GRU outperforming in predicting NOx compared to CO.

To summarize, this research aims at predicting emissions while advocating for responsible technological
innovation to foster a more sustainable future in aviation. As aptly expressed by Albert Einstein: "We cannot
solve our problems with the same thinking we used when we created them".



Resumen III

Este estudio se centra en predecir emisiones de aeronaves, específicamente el monóxido de carbono (CO)
y los óxidos de nitrógeno (NOx ), originadas en motores de turbinas de gas. La predicción se basa en un con-
junto de datos exhaustivo de emisiones de gases de combustión, que abarca variables ambientales y de pro-
ceso durante cinco años.

Motivada por las preocupaciones globales sobre la degradación ambiental debido al aumento de la de-
manda energética, esta investigación explora el estado actual de las emisiones generadas por turbinas de
gas en la industria aeronáutica, entendiendo la influencia del proceso de combustión en la formación de
emisiones, analizando metodologías de análisis de datos aplicables en aviación e implementando modelos
predictivos para estimar emisiones. Se destaca el uso de Sistemas de Monitoreo de Emisiones Predictivas
(PEMS) debido a su amplio uso en el monitoreo de emisiones.

El Análisis Exploratorio de Datos (EDA) revela relaciones complejas entre variables ambientales y parámet-
ros de turbinas de gas, resaltando correlaciones significativas con las emisiones. Modelos predictivos sólidos,
que incorporan técnicas de feature engineering como tratamiento de outliers y selección de variables, mejo-
ran notablemente la predicción de emisiones, reconociendo la necesidad de filtrado debido a la amplia dis-
persión de datos.

Se utilizan variables seleccionadas normalizadas, como temperatura y humedad ambiental, temperatura
de entrada de la turbina y presión de descarga del compresor, para predecir las emisiones de CO y NOx . El uso
de modelos GRU y CNN 1D muestra el rendimiento superior de CNN 1D en la predicción de contaminantes,
en contraposición a las recomendaciones convencionales, con GRU destacando en la predicción de NOx en
comparación con el CO.

Resumiendo, este estudio busca predecir emisiones mientras promueve la innovación tecnológica re-
sponsable para un futuro más sostenible en la aviación. Como dijo Albert Einstein: "No podemos resolver
nuestros problemas con el mismo pensamiento que usamos cuando los creamos".
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1
Introduction

The aim of this Thesis is to provide comprehensive insights into the prediction of aircraft emissions through
the application of data analysis methods.

This research is motivated by the pressing global challenge posed by the escalating demand for energy,
which has considerably impacted the environment in recent years. This surge in energy demand has led to
growing concerns regarding environmental issues, notably the growth in deforestation rates and the concur-
rent increase in carbon and flue gas emissions.

The aviation industry’s impact on the environment is significant due to pollutant emissions, with carbon
monoxide (CO) and nitrogen oxides (NOx ) being some of the key aircraft pollutants. This comprehensive
review delves into the current state of understanding of aviation emissions, recent efforts to mitigate their
effects and ongoing projects that specifically target the reduction of CO and NOx emissions.

Moreover, considering the criticality of monitoring nitrogen oxides and carbon monoxide pollutants dur-
ing combustion processes within power plants, the development of effective monitoring solutions has emerged
as imperative. In response, two primary solutions have been developed to address this need: Continuous
Emission Monitoring Systems (CEMS) and Predictive Emission Monitoring Systems (PEMS).

In this study, particular attention will be given to the exploration of PEMS due to its widespread adoption
and relevance in environmental monitoring. PEMS has gained significant traction in the realm of emissions
monitoring for its capability to estimate and predict pollutants by utilizing historical data and process vari-
ables. This method’s prominence arises from its practicality in real-time assessment, making it a prevalent
choice across various industrial sectors, including aviation. By relying on statistical models and expert sys-
tems, PEMS not only offers cost-effective solutions but also presents an efficient mean to anticipate and
regulate emissions, especially in situations where continuous monitoring systems might be impractical or
resource-intensive. Through an in-depth analysis and examination of the PEMS framework, this research
aims to unravel its effectiveness and limitations, providing a nuanced understanding of its role in the context
of aviation emissions and its potential for facilitating more sustainable environmental practices within the
industry.

1.1. Motivation
Undertaking a Thesis focused on predicting pollutant levels from an aircraft gas turbine entails multifaceted
motivations within the realm of aviation and environmental stewardship. Such a Thesis aligns with the imper-
ative to minimize the ecological footprint of aviation, a critical consideration given the industry’s significant
impact on air quality. Research in this domain not only contributes to advancing predictive models but also
holds promise in enabling proactive measures to mitigate environmental pollution caused by aircraft emis-
sions.

1



2 1. Introduction

The aviation sector’s growing emphasis on sustainability drives the urgency for accurate prediction mod-
els that anticipate and monitor pollutant emissions from gas turbine engines. A Thesis concentrating on
forecasting contaminant levels from these engines aims to enhance the understanding of emission patterns
and their subsequent impact on the atmosphere. This endeavor not only augments academic knowledge but
also serves as a crucial step in devising strategies for emission reduction and regulatory compliance, aligning
with the aviation industry’s commitment to eco-friendly operations.

Figure 1.1: Aircraft engine emitting soot [1]

Furthermore, the motivation behind such a Thesis stems from the complex interplay between techno-
logical advancements and environmental responsibility. Exploring predictive modeling techniques in this
context empowers researchers to delve into cutting-edge methodologies, incorporating elements of machine
learning, data analytics and aerospace engineering altogether. The combination of these disciplines fosters
innovation in predictive modeling, offering potential solutions to monitor, manage and optimize the perfor-
mance of gas turbine engines in a manner that minimizes environmental impact.

Moreover, a Thesis centered on predicting pollutant levels from aircraft gas turbines presents an oppor-
tunity to address critical challenges concerning air quality and emissions control. The pursuit of accurate
predictive models enhances the understanding of emission dynamics, aiding in the development of more
efficient and eco-conscious aviation systems. This research avenue underscores the fusion of technological
innovation with environmental consciousness, paving the way for advancements that promote sustainable
aviation practices and reduce the ecological footprint of air travel.

1.2. Scope
The scope of this project is the prediction of CO and NOx pollutant emissions through the analysis of a novel
flue gas emission dataset. Thus, the following steps will be followed:

1. The initial chapter 2 predominantly focuses on delineating the current state of the art pertaining to
emissions generated by gas turbines within the aeronautical industry. Emphasis is placed on elucidat-
ing how the combustion process intricately influences the emitted pollutants, highlighting the pivotal
role played by combustion in shaping emissions. The discussion encompasses an in-depth analysis of
CO and NOx emissions, focusing on their environmental impact, and scrutinizes the pertinent regula-
tions associated with aircraft emissions, providing a holistic understanding of the regulatory landscape
concerning pollutant emissions from aviation. Subsequently, attention is directed towards explaining
ongoing projects and research endeavors aimed at mitigating emissions from aircraft engines.

2. Additionally, this Thesis delves into the realm of data analysis and its relevance within the aeronautical
industry. A concise yet insightful overview is presented, emphasizing the utility and applicability of
data analysis methodologies in facilitating informed decision-making and mitigating environmental
impacts in aviation. Special focus is directed towards CEMS and PEMS, elucidating their significance
as predictive tools in estimating and regulating pollutant emissions from gas turbine engines, offering a
comparative analysis of their methodologies, advantages and limitations. This chapter 3 also provides
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a mathematical explanation of the different analytical models and methods that will be employed later
in the emissions data analysis.

3. Moving forward, a subsequent chapter 4 outlines the core problem addressed in this research: imple-
menting a PEMS model to predict pollutant emissions. The approach is based on a comprehensive
dataset encompassing environmental variables, process variables and pollutant data collected over a
period of five years from a gas turbine. Thus, this chapter meticulously presents an Exploratory Data
Analysis (EDA) of the flue gas emission dataset.

4. The following chapter 5 proceeds to detail the process of feature engineering and the implementation of
two distinct models: Gated Recurrent Unit (GRU) networks and one-dimensional Convolutional Neural
Networks (CNNs). The comprehensive process involves a thorough examination of the models used
and their application in predicting emissions, marking a significant stride toward comprehending and
predicting pollutant emissions from gas turbines.

5. Finally, the culmination of this Thesis encapsulates the concluding chapter 6, presenting overarching
conclusions drawn from the research findings and suggesting potential avenues for future research and
development. This final segment offers reflections on the efficacy of the implemented models, the im-
plications of the findings and outlines prospective directions for advancing the predictive capabilities
of PEMS models in addressing gas turbine emissions.





2
Combustion and pollutant generation

This chapter delves into the intricate relationship between combustion processes in aircraft engines and the
resultant emissions, focusing notably on carbon monoxide (CO) and nitrogen oxides (NOx ). It explores the
evolving regulatory landscape governing aviation emissions and outlines future initiatives aimed at innovat-
ing technologies and practices to substantially reduce emissions from aircraft engines, fostering a greener
aviation industry.

2.1. Aircraft pollutant emissions
When fast jet planes appeared around 80 years ago they made it easier for people to travel, but they also
caused loud noise and air pollution issues. Nowadays, several regulations aim to control these aircraft emis-
sions, making newer aircraft versions better for the environment. Nevertheless, as time progresses, there are
more flying aircraft, so the efforts to reduce noise and pollution remain important until these days.

Initially, jet engines, despite their inefficiency, replaced propellers due to their capacity for high-speed
thrust with low weight. Efficiency was then not an environmental concern, with fuel cost being the sole incen-
tive for enhancements. But now, with the recognition of carbon dioxide (CO2) from fossil fuel combustion as
the primary driver of climate change, there’s increasing societal pressure to reduce aviation’s environmental
impact. Consequently, the adverse environmental impacts of widespread air travel are under greater scrutiny
than ever before [2].

The scientific literature encompasses numerous studies related to this field, with the consensus being
that aircraft emissions yield significant volatile and non-volatile species [3]:

• Non-volatile emissions are produced in the combustor and consist of refractory materials like soot
present in the particulate phase at high temperatures near the engine exit.

• Volatile emissions are created from substances existing as gaseous and vapour-phase pollutants, such
as CO2, CO, NOx , SO2, O3 and many organic compounds, in the hot exhaust.

Aircraft using kerosene-type fuels primarily generate carbon dioxide and water, which are directly linked
to the burned fuel. Variations in the carbon-to-hydrogen ratio of the fuel account for minor deviations in
emissions [4].

The fuel flow in common aircraft engines is nearly directly proportional to engine thrust settings. High-
temperature oxidation in engine combustors prompts the formation of nitrogen oxides from atmospheric
nitrogen [5], while trace elements in fuels and non-ideal combustion conditions contribute to the formation
of additional by-products such as sulfur oxides, unburned hydrocarbons and particulate soot. Aircraft ex-
haust can also contain species from burned lubricant oils and mechanical component wear.

Therefore, the real (simplified) combustion scheme in aircraft engines is the following [6]:
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Cn Hm +N2 +O2 +S →CO2 +N2 +H2O +O2 +CO +SOx +NOx +HC + soot

Reports estimate that a vast majority of commercial engine exhaust (approximately 99.5 to 99.9%) com-
prises nitrogen, oxygen, carbon dioxide and water vapor [5]. A detailed breakdown illustrates that CO2 and
water vapor constitute the major portion of aircraft exhaust, with the remainder accounting for less than 1%
of aircraft emissions. The bulk of emissions (about 90%) occur during cruising at altitude, with the remainder
emitted during takeoff, landing and ground-level operations, impacting the environment and human health.

Figure 2.1: Decomposition of aircraft emissions [7]

The volume of exhaust emissions depends on combustor temperature, pressure, fuel-to-air ratio, atom-
ization and air mixture [4]. On the other side, variability in pollutant amounts is observed based on engine
technology, model and, especially, thrust, while hydrocarbon emissions are subject to engine type, use, main-
tenance history and fuel composition, highlighting the complexities in emission determination and their en-
vironmental impact.

Poor air quality captures public attention due to its established link to various air pollutants and their
detrimental impact on both short-term and long-term human health. Additionally, air pollution not only
hampers visibility but also causes damage to buildings, cultural heritage and exerts direct and indirect in-
fluences on the climate. While developing nations face heightened air pollution concerns because of popu-
lation expansion, increased energy needs and economic growth, developed countries have notably reduced
the concentrations of several air pollutants in the past decade [8].

The rapid increase in air travel as well as its expected growth to meet future capacity demands has made
that aircraft emissions gain substantial attention in the last decades. Emission standards for new aircraft
engines have been established by the International Civil Aviation Organization (ICAO) since the late 1970s.
These standards, found in Volume II of Annex 16 to the Chicago Convention, outline protocols for measuring
carbon monoxide, nitrogen oxides, unburned hydrocarbons (UHC) and smoke number (SN) for new engines
[9].

While these regulations have significantly improved engine and fuel efficiency, the projected growth in
the aviation industry and subsequent rise in airport traffic may counteract the achieved reductions in aircraft
emissions over the last two decades [10].
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Figure 2.2: Long-term passenger traffic forecast, 2019-2050 [11]

As previously highlighted, the aviation industry plays a pivotal role in global transportation, yet it sig-
nificantly contributes to pollutant emissions. Therefore, the initial emphasis will be on understanding the
combustion process in gas turbines and how pollutants are generated within them. Subsequently, the focus
will shift to two key pollutants: carbon monoxide and nitrogen oxides. Their examination will encompass the
current comprehension of these pollutants, while later sections will focus on recent measures implemented
to mitigate their emissions and potential future strategies for their further reduction.

2.1.1. Combustion and generation of pollutants in gas turbines
The emphasis of this work is focused on the generation of pollutants in gas turbines, for which an exploration
of the underlying physics involved in their formation is required, meaning an explanation of the combustion
process in gas turbines is needed.

The combustion process in a gas turbine involves the controlled burning of a fuel-air mixture within the
combustion chamber. This process is essential for producing the high-temperature, high-pressure gases that
power the turbine.

This process consists of the following steps:

1. Fuel injection: the fuel, which can be natural gas, kerosene or liquid/gaseous fuels, is injected into the
combustion chamber.

2. Mixing with air: the fuel mixes with a precisely controlled amount of compressed air.

3. Ignition and combustion: once the fuel-air mixture is ignited, combustion occurs, releasing a signifi-
cant amount of thermal energy. This rapid combustion generates extremely high temperatures (up to
thousands of degrees Celsius) and increases the pressure of the gases.

4. Expansion: the hot gases produced expand rapidly, pushing against turbine blades and causing them
to spin.

The combustor receives high-pressure air at considerable velocities, meticulously undergoing controlled
deceleration to minimize pressure losses before the fuel introduction phase. Inside the combustion cham-
ber, designed intricately, there’s enough space and time for the efficient mixing of air and fuel, ensuring a
thorough combustion process before reaching the turbine stages. The critical design of the combustor dic-
tates intricate combustion processes, influencing chemical reaction completeness and the engine’s emission
nature and scale. As a result, the combustor significantly shapes an aircraft’s environmental impact on the
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climate [7].

To meet the diverse operational requirements of aircraft engines, combustors must perform efficiently
under a wide range of pressures and temperatures. This includes [7]:

• Reigniting at high altitudes after unexpected shutdowns in cold and low-pressure conditions.

• Sustaining stable combustion across various air velocities and fuel-to-air ratios to prevent flameout
during engine deceleration.

• At elevated pressures and temperatures, these combustors need to burn fuel effectively to ensure con-
sistent smooth temperature profiles and protect turbine components from damage, thereby extending
their durability.

However, reconciling these varied demands presents a notable engineering challenge due to the conflict-
ing solutions needed at different operational extremes.

Future combustors are anticipated to encounter more demanding requirements as manufacturers strive
to improve fuel efficiency. Although higher cycle pressure ratios enhance engine fuel efficiency, the increase
in compressor delivery and combustor inlet air temperatures reduce air cooling capacity. Consequently, a
greater proportion of total airflow is needed to cool the hottest engine parts, limiting airflow available for
primary combustion and dilution. This reduction complicates the regulation of turbine inlet temperature
profiles and emission levels [7]. Addressing these challenges needs of continuous advancements in cooling
techniques, devices, materials or a combination thereof to resolve these issues.

Now, the focus will be directed towards how the combustion process in gas turbines influences the for-
mation of pollutants.

The combustion chamber in gas turbine engines is subject to a set of requirements delineated in the
figure below. These criteria operate independently and have evolved over time through design improvements,
aiming to enhance them while also considering their impact on emissions.

Figure 2.3: Combustor performance requirements [12]

Gas turbine engines operate based on the Brayton cycle, and although an ideal cycle involves isentropic
compression, constant pressure heat addition and isentropic expansion through the turbine, real engines ex-
perience performance losses leading to stagnation pressure loss in the combustor. Nevertheless, the conver-
sion efficiency of fuel chemical energy into thermal energy remains notably high, typically exceeding 99.9%
under most power conditions [12].

Under optimal conditions, combustion of kerosene-type fuels primarily results in the production of car-
bon dioxide and water vapor (H2O), the proportions of which vary based on the specific fuel’s carbon-to-
hydrogen ratio. During cruise conditions, combustion products constitute only about 8.5% of the total mass
flow exiting the engine. Among these products, a small fraction (approximately 0.4%) arises from non-ideal
combustion processes (soot, HC and CO), as well as nitrogen oxidation (NOx ) [7].
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Figure 2.4: Gas turbine components characteristics [12]

The primary pollutants emitted by engines include carbon monoxide, unburned hydrocarbons, nitrogen
oxides and Particulate Matter (PM or smoke). At lower power settings, inlet combustor pressure and temper-
ature are relatively low, leading to reduced reaction rates for kerosene-type fuels. Here, liquid fuel undergoes
atomization, evaporation and combustion, necessitating sufficient residence time at elevated temperatures
for fuel conversion into CO2. In instances where the flow permits fuel vapor to exit the combustor with-
out complete reaction or if prematurely exposed to lower temperature due to mixing with colder airstreams,
incomplete or quenched reactions result in CO production. Conversely, at higher power conditions charac-
terized by elevated air pressures and temperatures, rapid reactions lead to near-zero CO and UHC emissions
while NOx and PM emissions become more pronounced [12].

NOx emissions, particularly thermal NOx , result from fast reactions described by the extended Zeldovich
mechanism:

O2 → 2O

N2 +O → NO +N

N +O2 → NO +O

N +OH → NO +H

Techniques to reduce thermal NOx involve limiting the time spent by the flow at high temperatures or
controlling maximum flame temperatures through stoichiometric adjustments. Fuel-rich regions at high
pressures and temperatures in the combustor can generate small carbon particles through complex chemical
processes, undergoing multiple transformations such as surface growth, agglomeration and oxidation before
exiting the engine as PM or soot [12]. The term particulate matter encompasses these emissions, which in-
clude invisible soot particles and aerosol soot precursors in modern engines.

The relationship between engine power conditions and emission production reveals that UHC and CO
levels are highest at low power and decline significantly with increased thrust. Conversely, NOx and PM
emissions escalate with engine power, usually peaking at maximum power conditions [12].
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Figure 2.5: Emissions vs. power level for PW4084 [12]

Thus, it can be stated that pollutants are generated as follows [7] [12] [13]:

• CO2, H2O and SOx O are directly linked to engine fuel consumption. In contrast, emissions like NOx ,
CO, HC and soot significantly fluctuate due to diverse variables, especially engine power settings and
ambient inlet conditions.

• Incomplete combustion leads to elevated CO and HC levels, particularly at low power settings with
inefficient fuel atomization and mixing processes.

• Carbon dioxide is generated as a product of complete combustion when carbon in the fuel combines
with oxygen.

• Carbon monoxide is formed when there’s incomplete combustion due to insufficient oxygen. Inade-
quate mixing or insufficient time for complete combustion can lead to CO formation.

• Nitrogen oxides are formed due to the high temperatures in the combustion chamber, where nitrogen
in the air combines with oxygen. At these high temperatures, nitrogen and oxygen react to form NOx

compounds. The majority of NOx emissions originate in the highest-temperature zones of the com-
bustor, primarily the primary combustion area, before dilution. The processes behind NOx formation
are dependent on local combustion temperature, pressure and duration, closely associated with the
combustor inlet conditions.

• Depending on the fuel composition and combustion conditions, solid particles can be formed from
incomplete combustion or from impurities in the fuel. Soot, comprising mainly carbonaceous mate-
rial resulting from incomplete combustion, is primarily formed in the fuel-rich primary zone before
oxidation in higher-temperature areas.

Understanding and controlling the formation of these pollutants is crucial for reducing emissions in gas
turbines. Advanced combustion technologies, such as staged combustion and lean-burn systems, are devel-
oped to mitigate pollutant formation by optimizing fuel-air mixing and combustion conditions.

The evolution of combustion technology aimed to manage regulated pollutants alongside safety and op-
erational imperatives. With the increasing relevance of non-volatile particulate matter (nvPM) emissions,
combustor design must now consider both NOx and nvPM emissions while optimizing fuel efficiency. This
must occur within the constraints of safety and operability, encompassing factors such as altitude relight,
turbine inlet temperature, combustion efficiency and thermal load, that shape primary design decisions [14].
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Currently, the predominant environmental concern revolves around nvPM and NOx emissions. Recent
advancements in combustion design have aimed to minimize their impact, notably through technologies
such as Rich-burn, Quick-quench, Lean-burn (RQL), and Lean Burn (LB).

RQL technologies employ specific combustion chamber designs. In RQL chambers, the fuel undergoes
atomization, forming a swirling flow, and maintains a fuel-rich primary flame zone. The quick dilution of this
zone into a lean mixture helps restrict NOx formation by swiftly passing through the high-temperature area
[14]. Consequently, RQL designs have notably reduced NOx emissions compared to earlier chambers.

nvPM typically originates in the primary zone near the fuel spray, where incomplete fuel-air mixing oc-
curs. To counter this, intermediate zones introduce a small amount of air to lower gas temperatures, facili-
tating the complete oxidation of CO and soot particles. However, managing the oxidation of soot particles in
RQL combustors, while simultaneously controlling NOx , presents challenges due to the coexistence of high
NOx formation and soot particle oxidation zones [14].

LB combustors, characterized by lower fuel-to-air ratios than RQL types, result in decreased peak tem-
peratures and subsequent lower NOx emissions. Higher excess air leads to reduced nvPM production. Yet,
maintaining stability with hydrocarbon fuels under low fuel-air ratios necessitates a pilot zone for stability
during specific operational conditions. Despite potential pollutant generation in the pilot zone, downstream
areas in lean-burn regions facilitate particle burnout, minimizing nvPM levels [14].

In the subsequent sections, a greater emphasis will be placed on carbon monoxide and nitrogen oxides
emissions, as they will be the pollutants under study in this Thesis.

2.1.2. Carbon monoxide (CO) emissions

Atmospheric carbon monoxide primarily results from the photochemical oxidation of methane, non-methane
hydrocarbons and direct emissions through various human activities like vehicular exhaust, heating, indus-
trial processes, and biomass burning.

In the troposphere, CO has a chemical lifetime of 30 to 90 days, mainly reduced by oxidation via hydroxyl
radicals [15].

It contributes to air quality degradation and poses health risks, particularly in densely populated areas.
Its binding with hemoglobin to form carboxyhemoglobin can have adverse effects on human health, causing
reduced oxygen-carrying capacity in the blood. While high exposure leads to asphyxia, even low levels may
affect neuropsychological performance and pose risks for those with cardiovascular diseases [16].

CO is primarily generated within aircraft engines due to incomplete jet fuel combustion, with it being
regulated by international standards. Over the last four decades, advancements in engine technology have
notably reduced CO emissions during the LTO (Landing and Take-Off) cycle, with most new engines emitting
less than 10kg of CO per complete LTO cycle [8].

CO emissions are highest at low power settings due to lower combustor temperatures and pressures [17],
representing challenges in air quality around airports during idle and taxi phases. Chemical transformations
of emitted CO in the troposphere result in the formation of carbon dioxide, nitrogen dioxide and ozone.

Even though this topic will be further presented in the next sections, it is important to highlight that
aircraft currently being produced are already complying with environmental directives whose application
deadline is still far away in time. As an example, it can be observed from the figure below that since 2016
aircraft are already complying with ICAO’s CO2 standard, which takes effect in 2028.
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Figure 2.6: Average margin to ICAO’s CO2 standard for new aircraft, 1980 to 2030 [18]

2.1.3. Nitrogen oxides (NOx ) emissions
In urban environments, nitrogen oxides, composed of nitric oxide (NO) and nitrogen dioxide (NO2), are pre-
dominantly produced from fossil fuel combustion.

The extended Zeldovich mechanism, which has been presented in the previous section, describes the
rapid reactions involving nitrogen and oxygen to form nitrogen oxides. The reaction involved in forming NO2

is rapid, with NO reacting with ambient ozone (O3) or radicals:

NO +O3 → NO2 +O2

These compounds have significant implications for atmospheric chemistry and human health, contribut-
ing to respiratory ailments and increased mortality rates. Particularly, NO2, known as a strong respiratory
irritant, has been extensively studied and is associated with cardiovascular and respiratory diseases.

In the context of aircraft engines, the high-temperature zones within combustors play a fundamental role
in the formation of nitrogen oxides. Their formation is highly sensitive to parameters such as combustor pres-
sure, temperature, flow rate and engine geometry [17]. Additionally, the thermal oxidation of atmospheric
nitrogen in the combustor results in the primary production of NOx .

Studies have shown that, unlike many other forms of combustion, modern high-bypass turbofan engines
primarily emit NO2 at idle, while NO dominates at high power regimes [19]. They have revealed varying
proportions of NO2 and NOx ratios based on different engine settings and aircraft types, indicating the com-
plexity of emissions characterization [20].

The intricacies of aircraft emissions, especially in relation to NOx , demonstrate the challenges in attribut-
ing and quantifying their contributions to ambient air quality.

NOx emissions are major contributors to ozone depletion and smog formation:

• Ozone depletion: it leads to increased levels of ultraviolet (UV) radiation reaching the Earth’s surface,
which can result in higher rates of skin cancer, cataracts and weakened immune systems in humans.
Additionally, it can harm plant life, disrupting ecosystems and impacting agriculture. The ozone layer’s
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depletion also affects marine organisms and can potentially cause damage to materials like plastics and
rubber. Overall, it poses significant risks to both human health and the environment.

• Smog: it is a type of air pollution that results from the interaction of pollutants in the atmosphere, often
a mix of smoke and fog. It typically forms in urban areas with high levels of vehicle emissions, industrial
processes and other combustion activities. The consequences of smog include respiratory problems,
such as aggravated asthma, bronchitis and other lung diseases. It can also cause eye irritation and
various cardiovascular issues. Long-term exposure to smog is linked to serious health conditions and
can even lead to premature death. Additionally, smog can harm vegetation, corrode buildings, and
have detrimental effects on the overall environment.

Before presenting the current existing regulation related to aircraft emissions, typical emissions values for
engine operating regimes will presented in the table below, as they will be useful later:

Species Idle Take-off Cruise

CO2 3160 3160 3160
H2O 1230 1230 1230
CO 25 (10-65) 1 1-3.5
HC 4 (0-12) 0.5 0.2-1.3

NOx (short haul) 4.5 (3-6) 32 (20-65) 7.9-11.9
NOx (long haul) 4.5 (3-6) 27 (10-53) 11.1-15.4

SOx O 1.0 1.0 1.0

Table 2.1: Typical emission index [g/kg] levels for engine operating regimes [7]

2.2. Associated regulation and current policies
This section delves into the intricate landscape of current aviation policies and standards, primarily focusing
on mitigating the environmental impacts of aircraft emissions, particularly nitrogen oxides, non-volatile par-
ticulate matter, carbon dioxide and other pollutants influencing both air quality and climate change.

As already mentioned, regulation is becoming stricter regarding aircraft emissions, due to the multiple
impacts they have on people’s health. Furthermore, greater awareness in society means that the measures
are also increasingly restrictive, growing exponentially in recent years.

Previous to the COVID-19 pandemic, global aviation (including domestic and international; passenger
and freight) accounted for [21]:

• 1.9% of greenhouse gas emissions (which includes all greenhouse gases, not only CO2).

• 2.5% of CO2 emissions.

As of 2022, emissions levels close to 80% of those previous to the COVID-19 pandemic had already been
reached [22]. Despite doubling since the mid-1980s, aviation’s emissions have paralleled the overall CO2

emission growth, maintaining a relatively stable share of global emissions, hovering between 2% to 2.5% [21].

Over the past 50 years, aviation has seen significant advancements in efficiency, which result in a slower
growth in aircraft emissions. In 2018, approximately 125 grams of CO2 were emitted per revenue passenger
kilometer (RPK), marking a considerable improvement from the eleven-fold higher rate in 1960 and twenty-
fold higher in 1950. These enhancements stem from aircraft design and technology improvements, larger
aircraft sizes accommodating more passengers and the rise in passenger load factor, which increased from
61% in 1950 to 82% in 2018 [21]. This factor measures the actual distance traveled by paying customers in
comparison to the distance if every flight operated at full capacity, highlighting the strides made in maximiz-
ing airline efficiency.
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Figure 2.7: Share of global emissions calculated based on total CO2 data from the Global Carbon Project [21]

As aircraft production rates increase, and considering their significantly long lifespan of approximately 40
years, the gradual rise in the number of aircraft in service occurs over time. This implies that to maintain or
decrease the aviation industry’s contribution to global pollution, there’s a growing necessity for increasingly
efficient aircraft.

Early in the aviation era, the primary focus was on minimizing operational costs, predominantly centered
around the price of fuel. The introduction of fast jets helped reduce operational time while consuming less
fuel due to their lighter weight. However, initially, factors such as efficiency, noise or pollution weren’t part of
the equations to enhance aircraft versions.

Figure 2.8: Aviation efficiency calculated based on global aircraft traffic data from the ICAO via airlines.org [21]
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Between 1965 and 1975, low-smoke combustors were introduced in early commercial jet engines, reduc-
ing visible smoke trails from aircraft. Later, higher bypass ratio engines in the late 1960s and early 1970s
notably improved fuel efficiency, reducing CO2 and water vapor emissions. These engines also emitted lower
levels of pollutants like HC and CO, especially at low power (idle) settings, due to enhanced fuel/air mixing.
Additionally, improved combustor designs minimized take-off smoke. From 1975 to 1985, advancements in
combustor design further decreased emissions of HC and CO by enhancing fuel atomization and employing
staged fuel injection at idle. The ongoing shift toward higher bypass engines aims to enhance fuel efficiency,
responding to both commercial demands and environmental concerns, particularly regarding CO2 impact
[7].

The current policies related to aircraft emissions concentrate on diverse aspects. These policies encom-
pass a multifaceted approach aimed at addressing various factors influencing emissions from aviation. They
include measures targeting specific emission types such as CO2, NOx and other pollutants originating from
aircraft operations.

The policies are designed to regulate and mitigate these emissions, considering their significant impacts
on air quality, climate change and atmospheric composition. Moreover, these policies often involve stan-
dards, market-based mechanisms and changes in air traffic management procedures to effectively manage
and reduce the environmental footprint of aviation activities. Overall, the current policies associated with
aircraft emissions reflect a comprehensive strategy aimed at tackling the complex issue of emissions gener-
ated by aviation.

These efforts collectively underscore the aviation industry’s commitment to advancing technologies to re-
duce emissions, enhance air quality and mitigate environmental impacts. The pursuit of these goals is driven
by a combination of regulatory pressure and commercial incentives, which continually push for innovations
that align with evolving environmental standards and global objectives for sustainable aviation.

There are various climate impacts arising from aviation emissions, including CO2, NOx , water vapor, SO2,
soot particles, contrails, cirrus formation, aerosol-cloud interactions, O3 formation and alterations in CH4

lifetime in the atmosphere. Among these, CO2, NOx emissions, contrails and cirrus formation are recognized
as having the most significant radiative forcing effects, though uncertainties persist regarding aerosol-cloud
interactions’ magnitude and effects [23].

Multiple interdependencies among these impacts exist, where changes aiming to mitigate one or more
may lead to synergies or trade-offs. For instance, avoiding ice-supersaturated air to reduce contrails and
cirrus formation might increase fuel consumption, subsequently elevating CO2 emissions. Similarly, efforts
to lower NOx emissions might prompt the development of engines consuming more fuel and subsequently
emitting more CO2 [23].

Short-term trade-offs and synergies involve constant technology, while long-term considerations factor in
technological advancements. For instance, introducing standards for aircraft cruise-NOx emissions may not
create immediate trade-offs, but over the long term, as future engines reduce NOx at the expense of higher
fuel consumption and CO2 emissions, potential conflicts might arise. Similarly, implementing charges on
specific emissions or fuel components could impact emissions differently in the short and long term based
on evolving technology and industry practices.

This study emphasizes the need to consider overall climate impacts when formulating policies, recogniz-
ing that certain impacts (like CO2) remain independent of specific technologies or engine types. The aim is to
strike a balance between reducing aviation’s climate impacts while also addressing potential trade-offs and
synergies between various emissions and operational considerations.

The currently enforced measures focus on the following aspects: [23]:

• Technology-design standards: set by the ICAO environmental committee (CAEP) and enforced by Cer-
tification Authorities, the European Aviation Safety Agency (EASA) adheres to stringent certification
standards for aircraft engine emissions. These standards, rooted in ICAO Annex 16 Volume II and Vol-
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ume III, encompass various emissions such as NOx , nvPM, CO, UHC and smoke. Their primary objec-
tive isn’t to favor particular technologies but rather to elevate the overall environmental performance
of aircraft globally over time by regulating and curbing emissions during the flight cycle.

• Operational regulatory instruments: despite several operational regulations under the Single European
Sky (SES) that primarily focus on performance indicators related to fuel efficiency and CO2 emissions,
there’s a notable absence of specific directives targeting non-CO2 impacts like NOx , nvPM and contrail-
cirrus formation.

• Fuel standards: jet fuel standards, encompassing DEF STAN 91-91 and ASTM D1655, predominantly
ensure compliance with safety and operational requirements. However, these standards might not ex-
plicitly align with environmental concerns, except for certain prescribed limits on chemical composi-
tions, affecting emissions such as nvPM and vPM.

• Other policies: market-based measures, including the EU Emissions Trading System (ETS) and the
ICAO Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA), are fundamental
strategies intended to curtail CO2 emissions and incentivize the reduction of aviation-related green-
house gases.

Despite progressive changes in standards, global NOx emissions from the aviation fleet haven’t signifi-
cantly decreased due to various factors like increased use of engines producing more NOx , fleet expansion
and slow fleet turnover.

CO2 standards, integrated into european legislation, mandate aeroplane-level certifications, which en-
compass various fuel efficiency technologies linked to aeroplane design, such as propulsion, aerodynamics
and structural modifications, to effectively reduce emissions. The focus is on continually enhancing fuel effi-
ciency to curtail CO2 emissions over the coming years [23].

For nvPM emissions, new and more stringent standards have been instituted to control ultrafine particle
emissions at the engine exit, aiming to enhance air quality and human health. The standards also facilitate a
pathway for phasing out the older smoke number regulation [23].

Figure 2.9: Best-estimates for climate forcing terms from global aviation from 1940 to 2018 [23]
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The International Civil Aviation Organization (ICAO) has been dedicated to addressing aviation emis-
sions’ impact on local air quality since the late 1970s. They’ve developed a set of measures focused on curb-
ing emissions from aircraft engines around airports and relevant airport sources. Annex 16 Volume II to the
Convention on International Civil Aviation outlines standards for aircraft engine emissions, supported by
guidance and technical documentation.

In their continuous efforts, ICAO recently achieved success with the adoption of the CAEP/10 nvPM Stan-
dard, based on visibility criteria. This was followed by CAEP/11’s agreement on an nvPM mass and number
Standard, which the ICAO Council adopted in March 2020, becoming effective from January 2021 [24].

The provisions by ICAO for local air quality encompass various areas, addressing liquid fuel venting,
smoke (expected to be replaced by the nvPM Standard) and primary gaseous exhaust emissions such as hy-
drocarbons (HC), nitrogen oxides and carbon monoxide from jet engines [24]. ICAO not only aims to mitigate
the negative impact of civil aviation on the global climate but also formulates policies, updates Standards and
Recommended Practices (SARPs) and conducts outreach activities.

The 41st Session of the ICAO Assembly in 2022 saw the adoption of Resolution A41-21, a comprehen-
sive statement consolidating ICAO policies and practices on environmental protection, notably on climate
change. This resolution introduced the long-term global aspirational goal for international aviation of achiev-
ing net-zero carbon emissions by 2050, aligning with the Paris Agreement’s temperature targets [25].

To attain these aspirational goals and foster sustainable growth in international aviation, ICAO is pursuing
a range of measures, including advancements in aircraft technology, operational enhancements, sustainable
aviation fuels and market-based mechanisms such as CORSIA (Carbon Offsetting and Reduction Scheme for
International Aviation) [25]. These efforts collectively aim to steer international aviation toward a more envi-
ronmentally sustainable future.

Further delving into CORSIA, the Carbon Offsetting and Reduction Scheme for International Aviation was
globally adopted by governments in 2016, aiming to stabilize net CO2 emissions from international aviation
starting in 2021. It’s been in effect since January 1st, 2019, requiring airlines to report their CO2 emissions
annually, with offsetting obligations kicking in from January 1st, 2021 [26].

It’s important to mention that CORSIA isn’t meant to replace efforts aimed at reducing carbon emissions
through technological advancements, operational improvements and infrastructural changes in the aviation
sector, but rather to complement them.

Originally, CORSIA’s baseline was set to be an average of 2019 and 2020 emissions, but the COVID-19 crisis
caused a significant drop in air transport demand in 2020. To prevent an excessive economic burden on the
already weakened airline industry and to align with the spirit of the framework, the ICAO Council decided
to use only 2019 emissions as the baseline for the period of 2021-2023. At its 41st Assembly, ICAO set 85% of
2019 emissions as CORSIA’s baseline from 2024 to 2035, which the industry supported [26].

Offsetting, a means of compensating emissions by financing reductions elsewhere, is a pivotal component
in global, regional and national emissions reduction policies. CORSIA lists eligible emissions units, guided by
environmental criteria to ensure the units deliver the required CO2 reductions. The scheme is anticipated to
stabilize international aviation’s net CO2 emissions at around 600 million tonnes, whereas without CORSIA,
the International Air Transport Association (IATA) estimates emissions could reach almost 900 million tonnes
by 2035 [26].

CORSIA’s implementation occurs in phases, with offsetting requirements gradually expanding to encom-
pass all international flights by 2027 [26]. However, certain exemptions exist for specific countries and cate-
gories of flights until then.

The international standards and recommended practices for CORSIA have been adopted to ensure uni-
form regulations within the industry. Uniformity is crucial to avoid market distortions and to maintain COR-
SIA’s environmental integrity.
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Furthermore, during the 41st ICAO Assembly, a significant milestone was reached with the adoption of
a long-term global aspirational goal (LTAG) for international aviation: achieving net-zero carbon emissions
by 2050, aligned with the UNFCCC (United Nations Framework Convention on Climate Change) Paris Agree-
ment. This historic agreement underscores ICAO’s leadership in addressing the intersection of international
aviation and climate change. The resolution, A41-21, outlines this ambitious goal [27].

The LTAG doesn’t impose specific emission reduction targets on individual states. Instead, it acknowl-
edges the unique circumstances and capabilities of each state. Factors such as developmental level, maturity
of aviation markets, sustainable growth, just transition and national air transport priorities will guide each
state’s contribution to this goal within their own timeframe. Each state commits to achieving this aim sus-
tainably, considering social, economic and environmental factors in line with its national context [27].

Enhanced monitoring and reporting systems for CO emissions will facilitate regulatory compliance and
environmental stewardship.

The implementation of measures addressing aircraft emissions can be categorized based on existing leg-
islation or regulatory systems as well as those necessitating the development of monitoring systems or new
regulations.

Some measures, such as introducing a cruise-NOx charge and incorporating aircraft NOx emissions into
the EU ETS, fall within existing regulatory frameworks. Additionally, new standards for LTO NOx emissions
and the introduction of an LTO-nvPM standard align with existing legislative mechanisms. Conversely, sev-
eral measures require the establishment of monitoring systems or further regulatory developments, like mon-
itoring aromatics content and cruise nvPM emissions, along with the introduction of charges or emissions
inclusion in the EU ETS [23].

Furthermore, measures requiring the development of a new type of standard, like the aircraft cruise-NOx

standard or engine cruise-NOx standard, demand additional regulatory frameworks. As for those reliant on
scientific research, initiatives focused on holistic optimization of the climate impact and indicators captur-
ing the total climate impact of flights are crucial for a comprehensive approach. Notably, the climate impact
of contrails and induced cirrus cloudiness appears less sensitive to changes in background concentrations
compared to NOx emissions, with contrails and cirrus typically exerting a positive radiative forcing effect
(warming). Strategies to reduce nvPM emissions, affecting contrails, without increasing CO2 emissions, pre-
dominantly involve fuel changes, urging further exploration into measures enhancing fuel quality [23].

Although measures reliant on scientific research are imperative, those anchored in indicators capturing
the comprehensive climate impact of flights stand out as the most effective, offering a holistic view encom-
passing all trade-offs and synergies among various emissions.

In order to reach the goal of achieving net-zero carbon emissions by 2050, there are several ongoing
projects which involve enhancing the Air Traffic Management (ATM) system, refining infrastructure and op-
timizing operations to establish a sustainable and efficient aviation system [28]. This, along with the rapid
integration of innovative aircraft technologies and the expanded use of Sustainable Aviation Fuels (SAFs), will
play a pivotal role in reaching the long-term aspiration of achieving net-zero carbon emissions by 2050.

These initiatives will be presented in the next section.

2.3. Ongoing projects and research initiatives
The aviation industry has shown a consistent drive for efficiency improvement. Prior to the COVID-19 pan-
demic, there was a steady rise in the passenger load factor, reaching a record average of over 82% in 2019.
Operational efficiencies have notably reduced fuel burn per passenger kilometer by 55% since 1990 [28].
However, certain infrastructure improvements have not progressed as swiftly as initially anticipated.

Aircraft operations have focused on weight reduction, aerodynamic enhancements to in-service aircraft
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and the implementation of systems that enhance efficiency during flight. Infrastructure improvements have
largely been centered on structural changes in ATM operations and energy-saving initiatives at airports, such
as limitations on auxiliary power units and reduced taxi times.

Operational enhancements include various measures, like [28]:

• Retrofitting winglets to save fuel and reduce emissions.

• Adopting lightweight cabin equipment.

• Implementing electric or assisted taxiing, which significantly cuts fuel consumption.

• Exterior paint improvements can also contribute to aerodynamic efficiency.

Infrastructure advancements in airports involve fixed electrical ground power, collaborative decision-
making and strategies to manage surface congestion. Air traffic management improvements encompass
performance-based navigation, required navigation performance, space-based navigation and continuous
descent and climb, among various other initiatives that aim to streamline flight operations and reduce fuel
consumption and emissions [28].

Ongoing research into alternative fuels like biofuels and hydrogen has the potential to further decrease
CO emissions. The shift towards alternative propulsion technologies like electric and hybrid-electric aircraft
holds the potential to virtually eliminate NOx emissions.

Figure 2.10: International aviation CO2 emissions prediction through different initiatives [29]

The development of electric and hybrid-electric aircraft is underway, offering the promise of revolution-
izing aviation emissions by eliminating CO and NOx emissions altogether. As we can see in the image below,
Airbus, one of the main aircraft manufacturers, has boosted several initiatives in the last years linked to elec-
tric and hybrid-electric aircraft, but as of today there is still not a viable way to design a fully electric aircraft.

This report outlines and sets medium-term technology goals for NOx or nvPM emissions, acknowledging
the escalating challenges of achieving further emission reductions, especially as technological advancements
reach plateaus. Furthermore, the likelihood of alternative aircraft technologies, like hybrid/electric propul-
sion, significantly impacting the fleet before 2037 appears remote.
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As for hydrogen-powered aircraft, the current scenario is similar. As hydrogen storage solutions are really
likely to be bigger than the current jet fuel storage tanks, it is hard to find a solution that would maintain the
currently existing commercial aviation standard. Moreover, the aviation industry is heavily regulated, which
means all requirements modified with the introduction of these type of technologies would need to be met,
for example explosion proofness requirements.

Figure 2.11: Airbus initiatives for electric and hybrid-electric aircraft design in the last years [30]

Nevertheless, ongoing research into sustainable aviation fuels continues to drive innovation in emissions
reduction strategies. Numerous projects are dedicated to the development and scalability of SAFs, aiming to
replace conventional jet fuels and significantly reduce both CO and NOx emissions.

Sustainable aviation fuel is a liquid fuel utilized in commercial aviation, boasting the capacity to slash
CO2 emissions by up to 80%. It can be sourced from various feedstock, including waste oils, fats, green and
municipal waste, and non-food crops. SAF can also be synthetically produced by capturing carbon directly
from the air. Its ’sustainability’ lies in the fact that the raw feedstock doesn’t compete with food crops, water
supplies or contribute to forest degradation [31].

Unlike fossil fuels that increase overall CO2 levels by releasing previously trapped carbon, SAF recycles
CO2 absorbed by the biomass used in its feedstock during its lifecycle. Seven certified biofuel production
pathways can produce SAF that operates on par with Jet A1 fuel [31]. These SAFs are designed as drop-in
solutions, easily blendable into existing airport fuel infrastructure and fully compatible with modern aircraft.

Figure 2.12: Different ways and their contribution to reaching net zero carbon emissions by 2050 [31]

It’s estimated that SAF could contribute around 65% of the necessary emissions reduction for aviation
to achieve net-zero status by 2050. To meet this demand, substantial production increases are crucial, par-
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ticularly in the 2030s, as global policy support becomes more prevalent, SAF competes favorably with fossil
kerosene and credible offsets become scarcer [31].

Aviation’s fuel consumption growth has trailed behind the increase in demand due to advancements in
engine fuel efficiency, notably through the adoption of modern high-bypass engine technology. These en-
gines rely on elevated engine pressure ratios and higher temperature combustors to enhance efficiency, re-
sulting in significant reductions in carbon monoxide and unburned hydrocarbons emissions. However, they
tend to elevate emissions of nitrogen oxides. Consequently, total NOx emissions from aircraft are escalating
faster than fuel consumption [7].

Ongoing research endeavors seek to improve combustion efficiency and develop environmentally friendly
engine designs. Efforts to improve idle efficiency and reduce NOx involve balancing liner cooling flows, fu-
el/air ratios, dwell times in the combustor and pressure losses [7]. Managing these factors is crucial to mini-
mize specific fuel consumption (SFC) losses while maintaining low emissions. Achieving an optimal balance
is necessary, considering the impact on emissions and the engine’s durability. Achieving fuel efficiency while
curbing emissions demands a delicate balance between various engine parameters.

Improved fuel efficiency and maintenance practices help minimize the conditions that lead to fuel-rich
combustion and CO production. The adoption of lean-burn combustion and catalytic converters in engines
has been effective in reducing NOx emissions [32] [33]. The development of next-generation engines with
advanced combustion designs aims to further mitigate NOx emissions. For example, as it can be seen in the
image below, as the Pressure Ratio (PR) increases, NOx emissions tend to decrease.

Figure 2.13: Effect of engine pressure ratio on NOx emissions and relative specific fuel consumption [7]

Aviation-related pollutant emissions, particularly CO and NOx , have undergone extensive research and
mitigation efforts. Advancements in engine technology, the exploration of alternative fuels and the pursuit of
innovative propulsion systems hold great promise for reducing these emissions. Sustainable aviation prac-
tices and forward-thinking technologies are paramount in mitigating the environmental impact of aviation
in the coming decades.

Until this point, the intricate relationship between combustion processes in aircraft engines and ensuing
emissions has been explored, while emphasis was also placed on the evolving regulatory landscape governing
aviation emissions and future initiatives aiming to advance innovative technologies and sustainable practices
to significantly reduce emissions from aircraft engines. This paves the way for the subsequent chapter, which
delves into the application of data analysis methodologies like predictive emissions monitoring systems. The
following chapter aims to comprehensively explore the role of these analytical tools in predicting pollutant
emissions from gas turbine engines, contributing to ongoing efforts aimed at addressing environmental con-
cerns in aviation.
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Data-based engine emission prediction

This chapter concentrates on the current status of data analytics within aeronautics, specifically emphasizing
prediction systems designed for engine emissions. Furthermore, it explores the analytical methods to be
employed throughout this Thesis.

3.1. Data analytics in aeronautics
Data analysis has emerged as a pivotal tool in today’s information-driven world, finding applications in di-
verse fields. This Thesis explores its profound significance in aeronautics, where the meticulous analysis of
data has the potential to optimize aircraft performance, enhance safety and mitigate environmental impacts.

The groundwork of data analysis, encompassing data preprocessing, exploratory data analysis and statis-
tical techniques, is fundamental for extracting meaningful insights from aeronautical data.

Data analysis plays a pivotal role in several aviation fields:

• Enhances safety through the analysis of Flight Data Recorders (FDRs) and Cockpit Voice Recorders
(CVRs).

• Allows for optimization of flight routes and fuel efficiency through the analysis of weather data, flight
data and historical flight patterns.

• Has applications in maintenance prediction and condition monitoring of aircraft components using
sensor data and predictive maintenance algorithms, with the most important fields being Structural
Health Monitoring (SHM) and Engine Health Monitoring (EHM). Predictive analysis aids in the early
detection of anomalies and potential failures, ensuring safety and minimizing downtime.

• Data analysis techniques can be used to predict engine performance parameters such as thrust, fuel
consumption and efficiency.

• Allows for real-time monitoring and adjustment of engine parameters during flight for optimal opera-
tion.

Furthermore, Artificial Intelligence (AI) represents cutting-edge technology aiming to replicate and en-
hance various human intelligence capabilities for tasks like decision-making, pattern recognition, visual per-
ception and natural language comprehension. In the aerospace industry, numerous potential applications
have been identified, showcasing AI’s potential to enhance system capabilities.

However, safety remains a paramount focus, and certification entities will not permit AI systems if they
compromise safety or increase associated risks. Current standards are inadequate for certifying most AI-
based systems due to the complexity of AI algorithms, which shift development from traditional requirement-
based models to data-driven approaches, making traceability challenging.

23
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Both disciplines encompass applications facilitating the prediction of aircraft engine emissions. This The-
sis aims to forecast gas turbine emissions, a task typically approached through either of two prevailing meth-
ods: Continuous Emission Monitoring Systems (CEMS) or Predictive Emission Monitoring Systems (PEMS).

3.2. Data analytics for prediction of engine emissions
As it has been mentioned, in the monitoring of CO and NOx pollutants emitted during combustion operations
in a power plant, two monitoring solutions have been devised: CEMS and PEMS [34].

• CEMS involves the installation of emission monitoring equipment (such as sensor sets) on-site, offering
real-time emission data directly from sensors. The accuracy of CEMS measurements relies on proper
maintenance and calibration adhering to standard procedures.

• Conversely, PEMS operates as an expert system utilizing process variables (e.g., ambient temperature,
turbine inlet temperature) as inputs and employing predictive models trained on historical data to es-
timate emission components.

The main differences between both methods are the following [35]:

1. Capital cost: PEMS generally cost significantly less, around half or less than CEMS installations. The
cost can be further reduced if a CEMS is already present on-site.

2. Calibration gases: PEMS do not require Environmental Protection Agency (EPA) protocol calibration
gases, reducing operational complexities compared to CEMS, which necessitate ongoing purchases of
calibration gases and additional storage requirements.

3. Preventative maintenance: PEMS have minimal ongoing maintenance requirements, usually limited to
periodic cleaning of the PEMS computer. CEMS, on the other hand, demand daily, monthly, quarterly,
semi-annual and annual maintenance, along with spare parts inventories, accounting for a significant
percentage of the system’s cost.

4. Data availability: PEMS ensure higher data availability, approaching 100%, by utilizing various inputs
for a robust database. Even during a PEMS failure, data from Distributed Control System (DCS) in-
puts remain accessible for predictions. Conversely, CEMS maintain around 95% uptime at best, with
potential data loss during analyzer or critical component failures.

5. Excess emissions troubleshooting: PEMS offer insights into excess emissions sources by identifying
abnormal combustion input parameters for immediate action and diagnostic trails. CEMS lack this
capability to pinpoint causes or facilitate corrective actions for excess emissions.

6. Obsolescence and service costs: PEMS analyzers are less prone to obsolescence and can be continually
upgraded for regulatory changes or software upgrades through cost-effective ongoing service contracts.
In contrast, CEMS incur higher annual service contract expenses.

Overall, PEMS demonstrate cost-efficiency, lower maintenance and higher data availability compared to
CEMS, making them a potentially favorable option for emissions monitoring systems.

From this point on, and considering it will be the method to be implemented through this work, the focus
will be directed towards PEMS.

3.2.1. Predictive Emission Monitoring Systems (PEMS)
In the aerospace industry, PEMS function as advanced computational models designed to estimate and mon-
itor pollutant emissions generated by aircraft engines. PEMS are utilized for the continuous monitoring of
emissions at stationary sources, serving as an alternative and backup for CEMS. They are primarily employed
to predict NOx emissions from combustion processes in both practical applications and the literature.

PEMS establish a mapping between a set of characteristic process parameters of an emission source (e.g.,
air pressure, turbine after temperature) and the corresponding flue gas emission. If the combustion pro-
cess variables are continuously monitored and recorded, emission concentrations after combustion can be
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predicted. PEMS are plant-specific emission monitoring systems with varying methodologies and designs,
ranging from relational models to Neural Network (NN) models [34]. PEMS enable the aviation industry to
meet stringent environmental regulations by proactively managing and reducing emissions.

PEMS in the aerospace sector employ sophisticated algorithms and machine learning techniques trained
on historical emissions data obtained from engine testing, flight simulations and actual in-flight measure-
ments. These models analyze and process the input data to predict emission components, such as nitrogen
oxides, carbon monoxide, unburned hydrocarbons and particulate matter.

The functionality of PEMS involves continuous monitoring and analysis of multiple parameters associ-
ated with engine performance and combustion processes. By integrating real-time data from sensors and
engine control systems, PEMS can make accurate estimations of emissions without the need for direct mea-
surement devices onboard the aircraft.

The predictive capabilities of PEMS contribute significantly to emissions management strategies in the
aviation industry. They enable proactive decision-making by providing insights into emission trends, allow-
ing for the optimization of engine performance, and supporting regulatory compliance efforts.

Computational models are pivotal in PEMS, primarily relying on historical process data for their func-
tioning. These models, notably Neural Networks, have been extensively utilized for predicting emissions in
various industrial settings.

For instance, Korpela et al. used linear regression and nonlinear NNs to estimate NOx emissions in
natural-gas-fired boilers [36]. Dynamic NNs were employed to create soft sensors for monitoring NOx and O2

emissions in industrial boilers [37]. Lv et al. applied a least squares support-vector-machine-based ensemble
learning paradigm to forecast NOx emissions in coal-fired boilers using operational data [38].

Different machine learning techniques were explored for emission prediction. Ćirić et al. employed vari-
ous neural network architectures to estimate CO2 emissions in a Serbian context [39]. Additionally, Dragomir
and Oprea introduced a multiagent system for monitoring urban air pollution from power plants [40]. Idzwan
et al. used support vector machines to predict NOx emissions in a Malaysian power plant [41]. Furthermore,
Liukkonen and Hiltunen presented an innovative emission monitoring platform based on self-organizing
maps [42].

Regarding the current state of the art of aircraft engine emissions prediction, numerous works have tar-
geted this field. For instance, a study conducted by Filippone et al. utilized flight performance models and
ADS-B (Automatic Dependent Surveillance–Broadcast) data for predicting emissions along specific routes,
covering carbon dioxide, carbon monoxide, nitrogen oxides and water vapor. This research incorporated di-
verse aircraft types and operational altitudes surpassing 3000 feet. The study aimed to bridge a crucial void
in aviation emission inventories by utilizing the integration of real-time flight data [43].

Saboohi and Ommi studied semi-analytical prediction methodologies for gas turbine emissions during
the conceptual design phase, thus targeting early design stages. To achieve this, a Chemical Reactor Network
(CRN) was formulated, utilizing available input data for detailed combustion modeling. The study examines
three distinct chemical mechanisms relevant to Jet-A aviation fuel. Results indicated a commendable align-
ment between CRN outputs and emissions from actual engine test rigs. Remarkably, the augmented CRN
demonstrated high efficiency in predicting engine emissions, offering rapid execution (mere seconds) and
minimal CPU requirements, akin to those of a personal computer [44].

Kayaalp et al. conducted a study which focused on modeling combustion efficiency and exhaust emis-
sion indexes for a turboprop engine during the LTO cycle. Unlike conventional approaches, this research
employed Long Short-Term Memory (LSTM), a deep learning method, to analyze varied parameters such as
Air-Fuel Ratio (AFR), engine speed, fuel flow rate and exhaust emission data. By utilizing LSTM, the study
aimed to predict and understand the intricate relationship between these factors [45].

A study of high relevance for this Thesis was conducted by Kaya et al., employing the identical dataset that



26 3. Data-based engine emission prediction

will be further studied in this work, intended for predictive emission monitoring systems. This dataset was
specifically designed for predictive modeling of CO and NOx emissions. Through a novel machine learning
approach rooted in the Extreme Learning Machine (ELM) framework, the dataset underwent comprehensive
analysis, resulting in valuable insights into emission predictions [34].

Figure 3.1: Example of PEMS pipeline [34]

Overall, PEMS in the aerospace industry serve as advanced predictive tools that leverage data-driven
models to estimate and monitor emissions from aircraft engines, thereby aiding in environmental impact
reduction and ensuring adherence to emission standards.

This Thesis aims to demonstrate the pivotal role of data analysis in aeronautics, focusing on forecast-
ing engine emissions using Predictive Emission Modeling Systems (PEMS). The evolving landscape of data
analysis techniques and their integration into the aviation industry underscores their significance in shaping
aeronautical technologies and environmental sustainability.

Prior to delving into the exploratory data analysis of the flue gas emission dataset, it is crucial to under-
score the foundational mathematical framework that will be used throughout this work, essential to support
this analysis and the future modeling of engine emission prediction. Consequently, the forthcoming section
will comprehensively elucidate the mathematical methods and models intended for utilization in subsequent
chapters, aiding in a deeper understanding of the analytical process that will be followed.

3.2.2. Mathematical background
The initial phase in addressing a data analysis problem involves identifying the nature of the problem at hand,
such as whether it pertains to supervised or unsupervised learning, regression, classification or other relevant
categories.

Supervised and unsupervised learning represent distinct approaches in machine learning. In supervised
learning, the algorithm learns from labeled data, wherein the inputs are paired with the corresponding cor-
rect outputs. This type of learning aims to predict or infer outcomes based on input-output mappings derived
from known data examples. On the other hand, unsupervised learning involves algorithms learning from un-
labeled data, seeking to identify hidden patterns or structures within the data itself without explicit output
labels.

Regarding regression and classification, they are two fundamental tasks in predictive modeling. Regres-
sion involves predicting continuous numerical values, aiming to establish a relationship between input vari-
ables and a continuous outcome. This method is used to forecast trends or estimate quantities, such as
predicting prices or determining scores based on various factors.

In contrast, classification involves categorizing data into distinct classes or categories. It deals with pre-
dicting discrete or categorical outcomes where inputs are assigned to specific classes or labels. For instance,
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classifying emails as spam or not spam, identifying whether an image contains a cat or a dog, etc.

In the realm of machine learning, solving problems involves a systematic approach comprising distinct
phases:

1. The journey begins with Exploratory Data Analysis (EDA), where a comprehensive understanding of
the dataset is established through statistical summaries and visualizations.

2. Following this, feature engineering comes into play, focusing on refining and transforming data features
to enhance the predictive capability of models.

3. Subsequently, the modeling phase selects suitable algorithms, trains the model on appropriate data
subsets and fine-tunes parameters to achieve optimal performance.

4. Finally, the experimental results phase evaluates the model’s effectiveness and generalization on un-
seen data, crucial for validating the model’s reliability in solving the intended problem.

This structured process, spanning from data exploration to model evaluation, forms the core framework
of addressing machine learning challenges.

During the initial stage of Exploratory Data Analysis, it is usual to start by examining the provided data and
attempting to observe basic characteristics. This typically involves checking for the presence of missing val-
ues, assessing whether uniform data quantities exist across multiple datasets (if applicable), identifying the
target variable and determining the type of problem being addressed. This foundational exploration serves
as a starting point to gain insights into the dataset’s structure and key attributes before delving deeper into
analysis and modeling processes.

Even though this will be further explained in the next chapter, during the initial assessment of the dataset
for this Thesis, it can be observed that it represents time series data spread across five years, displaying miss-
ing data at the end of each of those years. Unconventionally, the decision was made to fill these missing
values at this stage to ensure having complete time series for comprehensive analysis. While such data han-
dling is typically conducted during the feature engineering phase, it was deemed beneficial in this instance
to facilitate a more comprehensive understanding of the system.

A time series is a sequence of data points indexed in chronological order. It consists of observations or
measurements collected at regular intervals over time. Time series analysis involves studying and interpret-
ing patterns, trends and behaviors within the data to make predictions or understand underlying charac-
teristics, such as seasonality, trends and cyclic patterns. This analysis is commonly used in various fields
like economics, finance, weather forecasting and many others to derive insights and inform decision-making
processes.

Handling missing data within datasets is a critical part of data preprocessing, ensuring the accuracy and
reliability of subsequent analyses or model building. Various methods have been devised to address missing
values, each with its unique approach. Some commonly used techniques are the following [46]:

• Forward Fill: it involves substituting missing values with the most recent non-missing value in the
dataset. When encountering a missing value, this method simply carries forward the last known value
along the sequence until the next non-missing value is reached. This approach is particularly useful in
time series data where the assumption is that the most recent observation is a reasonable estimation
for the missing value.

• Backward Fill: also known as backward propagation, is the opposite of forward filling. It involves re-
placing missing values with the next known value in the dataset. When a missing value is encountered,
this method fills it with the next available observed value, assuming that future observations might
resemble recent data.

• Linear Interpolation: Linear interpolation estimates missing values by creating a linear relationship
between adjacent data points. When a data point is missing, this method uses the values before and
after the missing point to calculate an estimated value that lies along the straight line connecting the
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two known data points. The estimation assumes a linear relationship between the adjacent points and
interpolates accordingly.

Figure 3.2: Linear Interpolation example [47]

• Seasonal Mean: this technique involves calculating the mean value separately for distinct seasons or
specific time intervals within the dataset. When a value is missing for a particular period, it is re-
placed by the mean value corresponding to the specific season or time interval to which it belongs.
This method captures seasonal patterns and replaces missing values with seasonally relevant averages.

• KNN Mean: based on the K-Nearest Neighbors algorithm, it imputes missing values by identifying the
K most similar data points to the one with the missing value. The missing value is then replaced by the
average value of these nearest neighbors, effectively using the information from the most similar data
instances to estimate the missing value.

In a missing value imputation function such as Seasonal Mean and KNN mean, the pivotal parameter
would be the value n. This value usually denotes the number of prior observations (lags) taken into account
when computing the imputed values.

For Seasonal Mean, n could indicate the count of preceding observations within the identical season or
cycle. For example, if n is defined as 12 in monthly time series data, it would compute the average of values
from the corresponding month over the previous 12 months to impute the missing value.

For KNN Mean the parameter n typically signifies the count of nearest neighbors taken into consideration
for averaging. A greater value of n involves a larger number of neighbors in the weighted average computa-
tion used to fill in the missing value.

The optimal value for n relies on the characteristics of the data and the particular problem at hand. A
larger n value can offer more consistent estimates but might excessively smooth the data. Conversely, a
smaller n could better capture fluctuations but might exhibit increased sensitivity to outliers or noise.

Each of these methods provides a distinct approach to handle missing data, catering to different dataset
structures, patterns and characteristics, allowing for reliable replacements of missing values depending on
the specific context and dataset properties.

Once these methods have been implemented, it is essential to determine which one best suits the prob-
lem at hand. This assessment can be carried out in two ways: by examining the resulting dataset and/or us-
ing metrics that evaluate the performance of specific models after filling in missing values within the dataset.
These metrics are employed not only in cases of filling missing values but also in evaluating model perfor-
mance, typically in the final stages of problem-solving.

In machine learning, several key metrics are employed to evaluate the performance of models. These
metrics gauge the accuracy, precision and generalization capabilities of a model. Some prominent metrics
include [48]:
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• Mean Absolute Error (MAE): it measures the average absolute differences between predicted values
and actual values in a dataset. It provides an indication of how close the predictions are to the observed
values, irrespective of the direction of errors.

M AE = 1

N

N∑
j=1

|y j − ŷ j | (3.1)

• Loss functions: they quantify the inconsistency between predicted and actual values during model
training. Various types of loss functions exist, such as Mean Squared Error (MSE), Cross-Entropy Loss
or Hinge Loss. These functions guide the model’s learning process by penalizing errors and adjusting
model parameters to minimize the discrepancy between predictions and actual outcomes.

MSE = 1

N

N∑
j=1

(y j − ŷ j )2 (3.2)

• Accuracy: it represents the proportion of correctly predicted instances out of the total instances in the
dataset. It provides a basic measure of how well the model predicts the correct outcome.

Accur ac y = Number o f cor r ect pr edi ct i ons

Tot al number o f pr edi ct i ons made
(3.3)

• Precision and Recall: precision measures the ratio of correctly predicted positive observations to the
total predicted positive observations. Recall, also known as sensitivity, calculates the ratio of correctly
predicted positive observations to the actual positive observations in the dataset. These metrics are
particularly relevant in binary classification problems.

Pr eci si on = Tr ue posi t i ves

Tr ue posi t i ves +F al se posi t i ves
(3.4)

Recal l = Tr ue posi t i ves

Tr ue posi t i ves +F al se neg ati ves
(3.5)

• F1-Score: it is the harmonic mean of precision and recall. It provides a balanced measure that considers
both precision and recall, especially useful when there is an uneven class distribution in the dataset.

F 1 = 2× 1
1

Pr eci si on + 1
Recal l

(3.6)

• R-Squared (R2): it measures the proportion of the variance in the dependent variable that is predictable
from the independent variables in a regression model. It indicates how well the model fits the data, with
values closer to 1 indicating a better fit.

These metrics serve as crucial tools to assess the performance and effectiveness of machine learning mod-
els across various problem domains and tasks.

It’s also essential to highlight that when visualizing graphs such as time series, depending on the data be-
ing handled, filtering the available data can be crucial.

In machine learning problems involving signal filtering, various methods exist to process signals effec-
tively. Among these techniques are LOWESS (Locally Weighted Scatterplot Smoothing), Savitzky-Golay filter-
ing and Butterworth filtering.

LOWESS is a non-parametric regression method used for smoothing noisy data. It works by fitting mul-
tiple local polynomial regressions to different subsets of the data, weighing nearby points more heavily than
distant ones. This approach provides a smoothed curve that captures the underlying trend within the signal
while reducing noise [49].
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It’s beneficial because it uncovers hidden patterns or trends that might not be obvious from the raw data.
By adjusting a smoothing parameter, it is possible to control the degree of flexibility in the fitted curve, bal-
ancing between capturing smaller fluctuations and highlighting broader trends.

LOWESS is widely applied in various fields, providing insights into relationships between variables with-
out imposing rigid assumptions. Its flexibility makes it valuable for understanding complex, non-linear rela-
tionships, enabling better visualization and comprehension of data patterns for informed decision-making
in diverse domains.

For LOWESS smoothing, the following steps are followed [49]:

1. Observations can be found as x and y vectors:

x = [x1...xN ] (3.7)

y = [y1...yN ] (3.8)

2. First, the distance between xi and the following observation x j is calculated:

di j = [yi 0...yi N ] (3.9)

3. The tricube weighting function is employed to augment observations that are closer in proximity, based
on these distances:

wi = (1−|di j |3)3 (3.10)

4. Through this method, a conventional weighted least squares system is resolved:

β̂= (XT WX)−1XT Wy (3.11)

X represents a specified first-order model, a linear model containing an intercept (constant value of
1) and a slope. Nevertheless, higher-order polynomials can be employed. W is essentially a diagonal
matrix created from the weights:

X =

1 x1
...

...
1 xN

 (3.12)

W =

w1

. . .
wN

 (3.13)

5. Upon solving the system, it yields β̂ -β0 as the intercept andβ1 as the slope. The smoothed observation
ˆysm in LOWESS is predicted or fitted from the system’s row corresponding to i:

ˆysm = Xi β̂ (3.14)

6. Algorithmically, each observation i is iterated through sequentially. The W is updated with the new
weights, followed by resolving the aforementioned least-squares system to update β̂ and subsequently
predict each ˆysm .
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Savitzky-Golay filtering is a method used for smoothing and noise reduction in signal processing. It oper-
ates by fitting successive polynomial regression models to adjacent subsets of data. This filtering technique
effectively removes high-frequency noise while preserving the original shape and features of the signal [50].

This method is advantageous because it preserves the shape of the data while reducing noise, making it
particularly useful for retaining important features like peaks or valleys in the original signal. By adjusting
parameters such as the window size (the number of neighboring points used for polynomial fitting) and the
polynomial degree, users can control the trade-off between smoothing and retaining fine details in the data
[50].

The Savitzky-Golay filter is widely applied in various fields such as signal processing, spectroscopy and
biomedical engineering, offering an effective way to denoise and smooth graphs without significantly distort-
ing essential features. Its ability to balance noise reduction with the preservation of important information
makes it a valuable tool for data analysis and visualization.

Figure 3.3: Savitzky-Golay filtering example [50]

Butterworth filtering is a type of signal processing technique commonly used in digital signal processing
to achieve a specific frequency response. It belongs to the category of Infinite Impulse Response (IIR) filters
and is characterized by a maximally flat frequency response within the passband while gradually attenuating
frequencies outside this range [51].

The key principle of Butterworth filters lies in their design to minimize ripples or variations in the fre-
quency response within the passband. This is accomplished by optimizing the filter’s transfer function in
such a way that the magnitude response is as flat as possible, resulting in a smooth roll-off from the passband
to the stopband without any ripples or peaks [51].

This filter design is determined by its order, which defines the rate of attenuation beyond the cutoff fre-
quency. Higher-order Butterworth filters provide steeper roll-off but may introduce phase distortion, espe-
cially in the transition region between the passband and stopband [51].

Utilizing mathematical equations involving the Butterworth polynomial and transfer function coefficients,
this filter can be implemented across various applications, including audio signal processing, telecommuni-
cations and biomedical signal analysis, to extract or manipulate specific frequency components while mini-
mizing unwanted noise or interference [51].
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Figure 3.4: Butterworth filtering example [52]

All filtering methods offer distinct approaches to filter signals in machine learning problems, enabling the
extraction of meaningful information while mitigating the impact of noise in the data.

Furthermore, utilizing multiple visualizations in machine learning is crucial as it aids in comprehend-
ing complex relationships, identifying patterns and assessing data distributions, ultimately enhancing the
understanding of underlying structures within the dataset. Visualizations serve as powerful tools to explore
data from different angles, uncover anomalies and facilitate better decision-making in model building and
analysis. The following plots will be used during the dataset analysis:

• Lmplot is a function in Python’s Seaborn library used to create scatter plots with regression lines fitting
the data. This type of plot is particularly useful for visualizing relationships between two variables and
displaying linear regression models along with their confidence intervals. Lmplot provides a quick way
to assess the strength and direction of the relationship between variables and observe if a linear trend
exists between them.

• Pairplot, also available in Seaborn, generates a grid of pairwise plots for a given dataset, showcasing
the relationships between all pairs of variables. It displays scatterplots for numeric variables and his-
tograms for the diagonal where the same variable is plotted against itself. Pairplot is beneficial in
quickly visualizing multivariate relationships, enabling the identification of correlations or patterns
among multiple variables simultaneously.

• A Boxplot, or Box-and-Whisker plot, is a graphical representation that displays the distribution of a
dataset along with its statistical summary. It showcases the median, quartiles and potential outliers
within the data. The box represents the interquartile range (IQR), while the whiskers extend to show the
range of the data, excluding outliers. Boxplots are effective in comparing distributions and identifying
potential anomalies or differences among groups or categories within the data.

• A Lag plot is a graphical technique used to identify patterns or autocorrelation in time series data. It is
used in time series and sequential data analysis, and shows the relationship between a data value at a
given time and its value at a previous time (lag).
In a lag plot the X-axis typically represents the value of the series at time t, and the Y-axis shows the value
of the series at time t+1, t+2, t+3, and so on, depending on the lag. Each point on the plot represents a
pair of values from consecutive time points, and if the points are randomly scattered and don’t follow a
specific pattern, it suggests a weak serial correlation, indicating randomness in the data. If the points
exhibit a pattern, like a diagonal line or a distinct shape, it indicates serial correlation and a potential
pattern in the data.
Lag plots are instrumental in visually detecting relationships or dependencies between observations at
different time intervals, aiding in understanding the temporal structure and potential autocorrelation
within the time series data.
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These visualization techniques offer valuable insights into the data, allowing for a better understanding
of relationships, distributions and variations, which in turn aids in making informed decisions during the
machine learning process.

An immensely significant concept mentioned earlier is the notion of an outlier. Outliers refer to data
points that significantly differ from the majority of observations in a dataset. These values are notably distant
from other data points and can skew statistical analyses, leading to misleading interpretations or models if
not appropriately addressed. Detecting outliers is crucial in various fields such as data analysis, machine
learning and statistics due to several reasons:

• Impact on statistical measures: outliers can substantially affect statistical measures like mean, variance
and standard deviation, leading to inaccurate estimations of central tendencies and variability.

• Model performance: in machine learning, outliers can negatively impact model performance. They
might cause overfitting, where the model excessively fits the training data including outliers, leading to
poor generalization on new data. Conversely, outliers might cause underfitting by affecting the model’s
ability to capture the underlying patterns in the data.

• Data integrity and insights: outliers might represent errors or anomalies in the data collection process.
Identifying and addressing outliers help maintain data integrity and ensure that insights drawn from
the data are reliable.

• Robustness of analyses: outliers can distort relationships between variables, impacting correlations,
regressions and other analytical techniques. Detecting and handling outliers appropriately improves
the robustness and accuracy of analyses.

To mitigate the influence of outliers, various methods are employed, such as trimming (removing extreme
values), winsorizing (replacing extreme values with less extreme ones) or using robust statistical techniques
that are less sensitive to outliers. Identifying outliers is essential to ensure the reliability and accuracy of anal-
yses, preventing misleading conclusions or poorly performing models.

Identifying correlations among variables or within a single variable is also critical in data analysis and
machine learning for several reasons. Understanding these relationships helps in discerning how changes in
one variable might affect another, revealing potential dependencies, patterns or associations that can signif-
icantly impact predictive models or analyses. The identification of correlations assists in feature selection,
allowing the inclusion of only relevant and influential variables in model building, which can enhance pre-
dictive accuracy and reduce overfitting.

Correlation matrices play a pivotal role in unveiling these relationships. A correlation matrix is a table
representing the pairwise correlations between variables in a dataset. Each cell in the matrix indicates the
correlation coefficient, a numerical measure representing the strength and direction of the relationship be-
tween two variables. A correlation coefficient of +1 denotes a perfect positive linear relationship, -1 indicates
a perfect negative linear relationship and 0 implies no linear relationship between the variables.

Figure 3.5: Correlation types [53]
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Figure 3.6: Correlation matrix example [53]

Linear and nonlinear correlation metrics distinguish the type of relationship between variables. Linear
correlation metrics, such as Pearson’s correlation coefficient, measure the strength and direction of a linear
relationship between variables. It evaluates the linear association between two continuous variables and as-
sumes a linear pattern between them [53].

r =
∑

(xi −x)(yi − y)√∑
(xi −x)2 ∑

(yi − y)2
(3.15)

However, in cases where the relationship between variables doesn’t follow a linear pattern, nonlinear cor-
relation metrics are employed. Among the popular nonlinear correlation metrics are Kendall’s Tau and Spear-
man’s Rank correlation coefficients [54] [55]:

• Kendall’s Tau assesses the strength and direction of the ordinal association between two variables, re-
gardless of the data distribution, making it suitable for variables with rankings or ordinal data.

τ= C −D

C +D
= C −D

n
2 (n −1)

(3.16)

Here, C and D are counts of concordant and discordant pairs, respectively. Concordant pairs are those
in which the order of both variables is consistent, while discordant pairs have inconsistent orders be-
tween the variables.
Kendall’s Tau ranges from -1 to 1, where: if τ= 1, it indicates perfect agreement between the rankings of
the two variables; if τ=−1, it signifies perfect disagreement between the rankings of the two variables;
and if τ= 0, there is no association between the rankings of the two variables.

• Spearman’s Rank correlation, akin to Kendall’s Tau, evaluates monotonic relationships between vari-
ables, focusing on the consistency of the relative order of values rather than their specific numerical
difference. The formula to compute Spearman’s Rank correlation coefficient involves the calculation of
the covariance of the ranks of the variables, as well as their standard deviations. Given di as the differ-
ence between the ranks of paired observations and n as the number of paired observations, the formula
is expressed as:

ρ = 1− 6
∑

d 2
i

n(n2 −1)
(3.17)

As for Kendall’s Tau, Spearman’s Rank correlation coefficient ranges from -1 to 1.
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While Pearson’s correlation measures the linear relationship between variables based on their covariance
and standard deviations, Kendall’s Tau and Spearman’s Rank correlation focus on the order or ranks of obser-
vations, making them particularly useful when linear correlation assumptions do not hold or when dealing
with categorical or ordinal data.

Both Kendall’s Tau and Spearman’s correlation coefficients are robust against outliers and deviations from
linear patterns, making them suitable for nonlinear relationships or when dealing with non-normally dis-
tributed data. Notably, the Kendall correlation involves a computational complexity of O(n2), unlike the
O(n·log(n)) complexity associated with Spearman correlation, where n represents the sample size.

Overall, the choice of correlation metric depends on the nature of the data and the specific relationships
one aims to explore, highlighting the necessity of understanding the nuances and characteristics of different
correlation measures for robust analysis and modeling in machine learning and data science.

On the other hand, a histogram is a graphical representation of the distribution of numerical data. It
consists of a series of bars where each bar represents the frequency or count of values falling within specific
intervals, known as bins, along the horizontal axis. The vertical axis typically displays the frequency or rela-
tive frequency of occurrences within each bin.

There are various types of histograms that depict different patterns of data distribution [56]:

• Symmetric (or bell-shaped) histogram: this type forms a symmetrical shape resembling a bell curve,
indicating a normal distribution where the data is evenly distributed around the mean. It’s also known
as a Gaussian or normal distribution.

Figure 3.7: Symmetric histogram example [56]

• Skew-left (negatively skewed) histogram: a skew-left histogram displays a longer tail on the left side, in-
dicating that the majority of data points are concentrated on the right side, with few outliers stretching
the distribution to the left.

Figure 3.8: Skew-left histogram example [56]

• Skew-right (positively skewed) histogram: conversely, a skew-right histogram exhibits a longer tail on
the right side, implying that most data points are clustered on the left side, while a few outliers extend
the distribution to the right.
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Figure 3.9: Skew-right histogram example [56]

• Uniform histogram: in a uniform histogram, all bins or intervals have approximately the same fre-
quency, indicating an even distribution of data across the entire range without any prominent peaks or
tails.

Figure 3.10: Uniform histogram example [56]

• Bimodal histogram: this type of histogram displays two distinct peaks or modes, indicating that the
data has two different centers or patterns within the distribution.

Figure 3.11: Bimodal histogram example [56]

Histograms serve as valuable tools in data analysis, providing insights into the shape, center, spread and
possible skewness of a dataset, facilitating a better understanding of its characteristics and aiding in making
informed decisions during data exploration and analysis.

Subsequently, an interesting technique for analyzing the dataset involves its decomposition, offering
valuable insights into its structural components and patterns.

Time series decomposition entails a technique that dissects a time series into multiple components, each
representing distinct underlying patterns: trend, seasonality and noise [57].

• Seasonality: describes the periodic signal in the time series.

• Trend: describes whether the time series is decreasing, constant, or increasing over time.

• Noise: describes what remains behind the separation of seasonality and trend from the time series. In
other words, it’s the variability in the data that cannot be explained by the model.
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There are two types of decomposition: additive and multiplicative. Additive decomposition sees a time
series as the sum of its components (trend, seasonality and residual), while multiplicative decomposition
views it as the product of these components. Additive is used when variations in the series are independent
of its level, while multiplicative suits data where fluctuations relate to the series’ level. Additive is for constant
fluctuations and multiplicative is for variable fluctuations with the series’ level.

y(t )addi t i ve = Tr end +Seasonal i t y +Noi se (3.18)

y(t )mul ti pl i cati ve = Tr end ×Seasonal i t y ×Noi se (3.19)

Decomposition serves as a crucial tool in time series analysis, aiding in understanding trends, season-
ality and irregular patterns for informed modeling and forecasting decisions. While it provides a structured
framework, real-world data often deviates from idealized additive or multiplicative models, presenting com-
plexities that may challenge accurate decomposition. Nonetheless, it remains a fundamental approach for
analyzing and forecasting time series data.

For the upcoming explanations, it’s vital to introduce a new concept: p-value.

The p-value is a statistical concept used to determine the strength of evidence against a null hypothesis in
a scientific study or experiment. It helps researchers assess whether their findings are statistically significant
or simply the result of random chance [58].

In a hypothetical scenario where you function as a scientist evaluating a new drug’s efficacy, the null hy-
pothesis posits that the drug yields no effect and any variances noted in the study are random chance occur-
rences. The p-value serves as a metric to quantify the probability that observed outcomes stem solely from
chance.

Here’s how it works [58]:

• Calculating the p-value: following the completion of the experiment, data analysis is conducted using
statistical techniques. The p-value, ranging from 0 to 1, holds significance; smaller values, such as 0.05
or lower, indicate that the observed outcomes are improbable to arise solely from chance.

• Interpreting the p-value: a p-value below 0.05 (often employed as a benchmark) indicates substantial
evidence opposing the null hypothesis. In the drug scenario, this implies that the drug possesses a
tangible and substantial impact. Conversely, a p-value surpassing 0.05 suggests that outcomes are more
likely due to random chance, thereby lacking sufficient evidence to dismiss the null hypothesis.

Fundamentally, a p-value serves as an indicator of whether observed results hold significance or could
have occurred merely by chance. A diminished p-value (below 0.05) implies that the findings are more likely
authentic rather than a coincidence, whereas an elevated p-value suggests that the results might lack persua-
siveness.

It’s crucial to note that while the p-value is integral, it’s only a component of the scientific method. It does
not quantify the magnitude or practical relevance of the observed effect under study and it’s not the sole de-
terminant when assessing the significance of research findings. The interpretation of p-values should always
be within the broader framework of the entire study and with a comprehensive understanding of the specific
research domain.

Although graphs serve as valuable tools for observation and assessment, having a quantitative method to
ascertain the stationarity of a given series holds significant value.

A stationary time series maintains consistent statistical properties such as mean, variance and autocorre-
lation throughout its duration. This characteristic holds several implications [59]:

• Simpler modeling: stationary time series make it easier to build statistical and predictive models, such
as ARIMA (autoregressive integrated moving average) models, which assume stationarity.
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• More precise estimates: parameter estimates in stationary series tend to be more accurate, improving
predictive capabilities.

• Valid assumptions: many statistical methods assume stationarity, making these methods valid for such
data.

• Interpretable analysis: stationary series are easier to understand, and meaningful relationships are
more apparent.

Determining if a given time series is stationary or not can be done using statistical tests called Unit Root
tests. There are multiple variations of them, where the tests check if a time series is non-stationary and pos-
sess a unit root.

There are multiple implementations of Unit Root tests like [59]:

• Augmented Dickey Fuller test (ADF Test).

• Kwiatkowski-Phillips-Schmidt-Shin – KPSS test (trend stationary).

The widely utilized method is the ADF test, in which the null hypothesis stipulates the time series con-
taining a unit root and being non-stationary. Therefore, if the obtained p-value from the ADF test falls below
the significance level (0.05), rejecting the null hypothesis implies that the time series is stationary. Conversely,
a p-value above 0.05 suggests the time series can be considered as non-stationary. The KPSS test, conversely,
evaluates trend stationarity. In contrast to the ADF test, its null hypothesis and p-value interpretation are
reversed. Therefore, a p-value below 0.05 indicates a stationary trend [59].

The subsequent step entails analyzing whether detrending the time series yields significant effects, aiding
in comprehending the dataset’s characteristics and patterns.

Detrending a time series involves removing or modeling the underlying trend in the data. It is used to
make data more stationary, reveal short-term patterns, improve modeling, enhance prediction accuracy and
simplify interpretation.

Detrending can be done using methods like differencing, regression modeling, smoothing or decomposi-
tion (with the last two methods already being explained above). The specific technique chosen depends on
the data and analysis goals.

Another important technique usually employed in EDA consists in examining the seasonality of a time
series. This involves identifying recurring patterns or cycles in the data.

To investigate this aspect, the autocorrelation plot method is usually employed. This method aids in vi-
sualizing patterns by presenting the autocorrelation of a time series across various lag points.

Autocorrelation, in the context of time series analysis, refers to the correlation of a series with its own
lagged values. It measures the relationship between observations in a time series separated by a specific time
interval, known as the lag.

In simpler terms, autocorrelation assesses how each value in a time series relates to its preceding values
at different time lags. A positive autocorrelation at a specific lag indicates that observations at that lagged
position have a similar pattern or tendency to the current observation. Conversely, negative autocorrelation
suggests an inverse relationship between the current observation and the one at a given lag.

Autocorrelation is fundamental in understanding the underlying structure of a time series. It helps iden-
tify patterns, trends and seasonality within the data. Autocorrelation plots or correlograms visually represent
these relationships across various lags, aiding in determining the optimal lag for forecasting or modeling pur-
poses and in detecting potential dependencies or trends within the time series data.
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Peaks or spikes in the plot indicate potential seasonality within the data. For instance, in a monthly time
series where patterns recur yearly, notable spikes should appear at intervals such as the 12th, 24th, 36th and
so on.

Autocorrelation (ACF) and Partial Autocorrelation (PACF) are statistical measures used in time series anal-
ysis to understand the relationship between data points at different time lags.

ACF measures the correlation between a data point and its lagged values (previous time points) up to a
specified number of lags (e.g., 50). A high ACF at a particular lag suggests a strong correlation with that past
value [60].

PACF, on the other hand, measures the correlation between a data point and its lagged values while con-
trolling for the influence of intervening lags. It helps identify the direct influence of past time points on the
current value [60].

In time series analysis, ACF and PACF are useful for [60]:

• Identifying seasonality: ACF often exhibits periodic patterns at specific lags, indicating seasonality in
the data.

• Determining model orders: PACF helps identify the order of autoregressive and moving average com-
ponents in models like ARIMA.

• Model diagnostics: ACF and PACF plots are used to check if a chosen model is a good fit for the data.
Residuals should have no significant correlations in these plots.

• Forecasting: ACF and PACF provide insights into how past values affect future values, aiding in time
series forecasting.

Lastly, in EDA, it holds significance to assess the predictability or forecastability of the time series data.

Forecastability refers to the ability to predict future values in a time series. It can be assessed through
various techniques, and one of them is the entropy method.

In this analysis, the entropy of the time series will be computed using a method based on the natural
logarithm of the variance (square of the standard deviation) divided by two. This method considers entropy
as a measure of uncertainty or variability within the dataset. Higher variability corresponds to increased
entropy, serving as an indicator of forecastability, representing the predictability or stability of the data.

Entr opy = ln(2πeσ2)

2
(3.20)

In this sense, the lower the entropy value, the higher the predictability of the series. The more repetitive
the patterns in the series are, the lower the entropy, and hence, the higher the predictability.

It is important to note that this is a simple and fast approximation to calculate entropy as a measure of
forecastability, as more exact methods would require too much computational cost.

In the context of feature engineering, this phase usually involves the handling of outliers and the trans-
formation of data. Such actions facilitate the enhancement of predictive capabilities within future models
intended for deriving experimental results.

Among the various methods already mentioned for outliers treatment, the Interquantile Range (IQR)
method stands out as one of the most widely utilized.

In statistics, the distribution of a dataset is divided into quartiles, namely Q1 (the first quartile) and Q3
(the third quartile). The IQR is the range between these quartiles and represents the middle 50% of the data.
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It is calculated by subtracting Q1 from Q3.

The process involves several steps:

1. Calculating quartiles: first, the dataset is sorted in ascending order. Q1 is the value below which 25% of
the data falls, while Q3 is the value below which 75% of the data falls.

2. Computing the IQR: the IQR is determined by subtracting Q1 from Q3. This range represents the spread
of the middle 50% of the data.

3. Establishing bounds for outliers: lower and upper bounds are set to identify potential outliers. These
bounds are typically defined as values a certain distance (often 1.5 times the IQR) away from Q1 and
Q3.

4. Identifying outliers: any data point that falls below the lower bound or above the upper bound is con-
sidered a potential outlier.

5. Treatment of outliers: outliers can be handled in various ways depending on the nature of the data and
the context. Treatment options may include removal, transformation or imputation.

The IQR method is particularly useful because it is less sensitive to extreme values compared to other
methods such as mean and standard deviation-based techniques. It provides a robust way to detect and
manage outliers, allowing for a more accurate analysis of the dataset and improving the reliability of subse-
quent statistical analyses or machine learning models.

During feature engineering, another crucial task involves assessing the statistical significance of features
to discern their relevance. Simultaneously, identifying and potentially discarding features that contribute in-
significant or irrelevantly for modeling purposes, often termed as noise, is a common practice.

Canonical Correlation Analysis (CCA) is a statistical method used to explore the relationships between
two sets of variables and to identify the strongest associations or correlations between them. It aims to find
linear combinations of variables from each set that are highly correlated. It involves these key steps [61]:

1. Data preparation: organizing the dataset into two sets of variables, for example, X and Y, where X con-
tains the features to analyze and Y represents the target or related features. The canonical variables are
represented as linear combinations:

U = X ·Wx (3.21)

V = Y ·Wy (3.22)

Here, U and V are the canonical variables, and Wx and Wy are the weight matrices for X and Y, respec-
tively.

2. Calculating correlation: CCA seeks to find linear combinations (canonical variables) of X and Y that
have maximum correlation. It uses mathematical techniques to compute correlation matrices and ex-
tract the canonical variables.
The objective is to maximize the correlation between U and V, which is achieved by finding Wx and Wy .
The correlation between U and V is given by the canonical correlation coefficient ρ, which is calculated
as follows:

ρ =
√
λi (3.23)

Where λi represents the canonical correlation coefficient, which measures the strength of the relation-
ship between the canonical variables of X and Y, or eigenvalues obtained from the generalized eigen-
value problem:
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Here,
∑

xx and
∑

y y are the covariance matrices of X and Y, while
∑

x y is the cross-covariance matrix
between X and Y.
The weight matrices Wx and Wy are obtained from the eigenvectors corresponding to the largest eigen-
values of the generalized eigenvalue problem.

3. Feature selection: utilizing these formulas, CCA derives linear combinations of variables from X and
Y that are highly correlated, facilitating the identification of significant relationships between the two
sets of variables for effective feature selection and modeling.

Canonical Correlation Analysis holds significance as it enables the exploration of relationships between
two sets of variables, unveiling the most robust associations between them. This method aids in understand-
ing how different sets of features interact, assisting in feature selection by highlighting influential variables
while disregarding less impactful ones, ultimately refining predictive models for enhanced accuracy.

The last step related to feature engineering is data normalization.

Data normalization is a critical aspect of feature engineering that addresses the issue of disparate scales
or dimensions within the dataset’s features. As features often vary widely in their scales and dimensions, nor-
malization aims to bring them onto a consistent scale to facilitate effective analysis.

The mean value of each feature across the dataset is calculated. Then, this mean value is subtracted from
each data point within that feature. This process centers the data around zero.

Following mean subtraction, each data point is divided by the standard deviation of the feature. This step
scales the data, ensuring that each feature has a standard deviation of one. It transforms the data to have a
mean of zero and a standard deviation of one.

It’s worth emphasizing that during normalization, the mean and standard deviation should be computed
solely using the training dataset. This is crucial to prevent any data leakage or bias in the modeling process.
By exclusively using the training data, the models are trained on normalized values, ensuring that the vali-
dation and test sets remain unseen and unbiased. This approach helps maintain the integrity of the model
evaluation process by preserving the separation between training and testing data.

Splitting a dataset into three distinct subsets (train, validation and test) is a fundamental procedure in
machine learning for effective model development and evaluation.

• Training set: it comprises the largest portion of the dataset. It is used to train the machine learning
model. During training, the model learns patterns and relationships within the data.

• Validation set: it is employed to fine-tune the model’s hyperparameters and to assess its performance.
By adjusting parameters based on validation set performance, the model can improve its predictive
accuracy.

• Test set: this set serves as an independent dataset unseen by the model during training and validation.
It is used to evaluate the final performance and generalization capability of the model. This assessment
helps determine how well the model can predict outcomes on new, unseen data.

The process of splitting the dataset into these subsets ensures a structured approach to model develop-
ment, preventing overfitting. Moreover, it helps in avoiding biases that might arise from using the same data
for both training and evaluation purposes. This division enables a comprehensive evaluation of the model’s
performance, ensuring its robustness and reliability when applied to real-world scenarios.

Prior to delving into the explanation of the various models to be utilized in this Thesis, it has been con-
sidered crucial to provide an explanation of what deep learning really is.

Deep learning, as a subset of machine learning, emphasizes learning successive layers of increasingly
meaningful representations from data. These layered representations are learned via neural networks that
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transform input data into successively different and informative representations.

Each layer within a neural network is defined by a set of weights, which essentially represent the math-
ematical operations performed on the input data. These weights are initially random and are adjusted iter-
atively during training to help the network learn to map inputs to desired outputs accurately. The network
aims to minimize a loss function, a measurement that evaluates how well the network’s predictions align with
the actual targets [62].

During the training process, an optimizer algorithm, often based on backpropagation, refines these weights
systematically. Backpropagation involves propagating the error from the network’s output back through the
layers, adjusting the weights along the way to minimize the difference between the predicted outputs and the
actual targets. This adjustment of weights is a gradual process that occurs over numerous iterations, com-
monly referred to as the training loop [62].

Throughout this iterative training loop, the network’s weights are continually updated to minimize the
loss function, effectively steering the model towards making predictions that closely match the desired tar-
gets. This optimization process enables the network to learn from the data and improve its predictive accu-
racy, ultimately resulting in a trained network capable of generating outputs that are highly aligned with the
intended targets [62].

Despite its complexity, the core principle of deep learning lies in these simple mechanisms scaled up, cre-
ating models that exhibit impressive capabilities when processing vast amounts of data.

Figure 3.12: Deep learning neural network scheme [62]

Figure 3.13: Example of deep learning model [62]
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In the context of machine learning for regression and time series analysis, a model represents a mathe-
matical or computational framework that learns patterns and relationships within the provided data to make
predictions or produce desired outputs. It encompasses a set of algorithms, functions or layers organized to
process input data, extracting meaningful features and generating predictions or outputs.

In this specific case, a data generator is utilized to prepare input-output pairs for training deep learn-
ing models. The generator yields tuples containing two elements: samples and targets. Samples represent a
batch of input data, while targets correspond to the array of target values or predictions associated with the
input samples.

The data generator accepts various arguments [62]:

• data: the original array of normalized floating-point data.

• lookback: it determines the number of time steps backward the input data spans.

• delay: specifies the number of future time steps for the target values.

• mini ndex and maxi ndex : indices in the data array that define the segments of data for training, valida-
tion and testing.

• shuffle: dictates whether the samples are shuffled or drawn in chronological order.

• batch size: indicates the number of samples per batch used for training.

• step: specifies the interval, in time steps, at which data is sampled.

The models employed in this scenario, such as the 1D-CNN and GRU, operate with tensorized data. Ten-
sors are multidimensional arrays used to represent data in a format suitable for these models. Timeseries data
or sequence data, for example, is usually represented by 3D tensors of shape (samples, timesteps, features).

For instance, in a time series regression problem, the shape of the tensor resulting from the data generator
for samples might be (batch size, lookback, features), where batch size represents the number of samples per
batch, lookback denotes the number of time steps back in the input data and features refer to the number of
features or variables considered at each time step.

The tuples yielded by the data generator, comprising input data samples and corresponding target val-
ues, are structured in a way that conforms to the input requirements of the models. This organized format
facilitates the models’ ability to learn from the data’s temporal relationships and perform regression tasks
effectively. Additionally, by preserving chronological order and splitting the data into consecutive windows,
the validation and test results are evaluated realistically, ensuring a robust evaluation based on data collected
after training the models.

It is also important to note that in time series problems, the data is not randomly shuffled, but rather kept
ordered chronologically. This is for two reasons: it ensures that it is still possible to split the data into consec-
utive sample windows and it ensures that the validation/test results are more realistic and evaluated on data
collected after training the model.

Further exploration into the models themselves involves an evaluation of two specific types: the 1D CNN
and GRU, as previously mentioned.

In the context of convolutional neural networks, convolution is a mathematical operation that combines
two functions to produce a third function representing how one of the functions modifies the other. It is ap-
plied by sliding a function (referred to as a kernel or filter) over another function (referred to as input) and
calculating the integral of the product of the two functions at each position. This operation is widely used in
various fields such as signal processing, image processing, machine learning and general data processing.
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Convolution is employed to perform operations like smoothing, feature detection, extraction of relevant
information and data analysis, enabling the identification of specific patterns or features within input data.

In the context of image processing, convolution involves applying a filter over small regions of an image
to extract local patterns. For instance, employing an edge-detection filter entails sliding it across the image,
multiplying filter values with corresponding region values in each step. This produces a feature map where
each pixel represents a weighted combination of neighboring pixel values from the original image. These fil-
ters learn specific features and as multiple convolutional layers are applied in a neural network, deeper layers
can learn more complex and abstract features [62].

For instance, considering an image as a pixel matrix, convolution operates by applying a filter (kernel)
over small sections of the image, performing multiplication and summation to generate a new feature map.
These feature maps represent specific patterns in the image, such as edges, textures or shapes. Through
multiple convolutional layers, the neural network learns hierarchies of features by combining and refining
these representations to identify more intricate patterns in the original image [62].

Figure 3.14: How convolution works [62]

Convolution layers operate by examining locally situated patterns within spatial data through the appli-
cation of consistent geometric transformations across various spatial locations, referred to as patches, within
an input tensor. This process generates representations that possess translation invariance, enhancing the
efficiency and modular nature of convolution layers in handling data. Notably, this concept extends to spaces
of varying dimensionality such as 1D, which is usually employed for sequence processing [62].

A Convolutional Neural Network (CNN) is a type of neural network used for processing structured data,
including sequences and multidimensional arrays. CNNs are proficient in extracting intricate patterns and
relationships within data. Comprised of several layers, CNNs feature distinct components like convolutional,
pooling and fully connected layers. CNNs are highly adaptable and find utility in various domains, including
computer vision and natural language processing.

Convolutional neural networks are comprised of layered structures integrating convolution and max-
pooling layers. Max-pooling layers facilitate the spatial downsampling of data, an essential step in maintain-
ing manageable feature map sizes amidst increasing feature complexity. This downsampling also enables
subsequent convolutional layers to encompass a broader spatial context within the inputs [62].

To conclude CNNs, a common practice involves applying either a Flatten operation or a global pooling
layer, transforming spatially structured feature maps into vectors. Subsequently, Dense layers are applied to
execute classification or regression tasks.
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Recurrent Neural Networks (RNNs) function by sequentially processing input sequences, handling one
timestep at a time while retaining a continual state. This state is typically represented as a vector or a set of
vectors, signifying a specific point within a geometric space of states. RNNs are recommended over 1D CNNs
specifically for sequences where temporal patterns of interest aren’t invariant to temporal shifts. For instance,
in time series data where recent past observations hold more significance than distant historical data points,
RNNs prove to be a more suitable choice [62].

The most commonly used types of RNNs are LSTM (Long Short-Term Memory) and GRU (Gated Recur-
rent Unit), with a preference for GRU as a simpler and more cost-effective alternative to LSTM. In compari-
son to LSTM, GRU offers a more streamlined and resource-efficient structure. This characteristic makes GRU
preferable in many cases for its ability to capture long-term dependencies in sequences of data while reduc-
ing computational complexity. This benefit translates to improved efficiency and faster training speeds for
the recurrent neural network.

GRUs address typical RNN issues like long-term dependencies and problems with vanishing or exploding
gradients. These units utilize gates to regulate the flow of information throughout sequences, allowing the
network to learn long-range dependencies efficiently. Similar to LSTM units, GRUs manage information over
time, but with a simpler structure having fewer gates, resulting in fewer parameters and often lower com-
putational costs. They are particularly beneficial in applications requiring more efficient sequence models,
such as natural language processing or sequential data analysis.

As it has been already mentioned, deep learning involves models structured in layers. In GRU and 1D
CNNs, several key layers can be employed, such as: Dense, MaxPooling1D or GlobalMaxPooling. Each serves
a specific purpose within the network architecture.

• Dense layer: this layer is the basic neural network layer where each neuron is connected to every neu-
ron in the subsequent layer, allowing complex relationships to be learned between inputs and outputs
[63].

Figure 3.15: Example of network with one dense layer [63]

• MaxPooling1D layer: this layer downsamples the input representation by taking the maximum value
over a specific window. It reduces the computational load and focuses on the most important features
in a sequence [64].

Figure 3.16: Example of MaxPooling1D [65]
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• GlobalMaxPooling layer: similar to MaxPooling1D, but instead of a specific window, it takes the maxi-
mum value across the entire input sequence, capturing the most significant feature [66].

Now, moving on to fundamental concepts [67] [68]:

• Learning rate: it is a hyperparameter determining the step size at which the model adapts during train-
ing. A higher learning rate can speed up learning but may overshoot the optimal solution, while a lower
rate might converge slowly.

• Optimizer: this is an algorithm that adjusts the weights of the neural network based on the loss function
to minimize errors during training.
RMS (Root Mean Square) prop, an adaptive optimizer in deep learning, addresses varying gradient
problems by adjusting learning rates for individual weights. It improves convergence speed by utiliz-
ing squared gradients to control step sizes, aiming to stabilize training. However, defining an optimal
learning rate manually remains a challenge across diverse applications. Its formulation is the following:

v(w, t ) := γv(w, t −1)+ (1−γ)(▽Qi (w))2 (3.25)

w := w − ηp
v(w, t )

▽Qi (w) (3.26)

Gradient descent, a fundamental optimization method in machine learning, utilizes gradients to iter-
atively update model parameters toward a local minimum. It mimics a ball rolling downhill in a bowl,
seeking the steepest path to lower the cost function. While effective, it can be computationally expen-
sive with large datasets and struggles with nonconvex functions in determining optimal steps along the
gradient.

Figure 3.17: Visual representation of gradient descent [68]

Another popular optimizer is Adam (Adaptive Moment Estimation), which combines the advantages
of RMSprop and momentum optimization. It adapts the learning rates of each parameter, providing
better convergence and efficiency. Adam is also one of the preferred optimizers when working with
regression problems. Its formulation is the following:

mt =β1mt−1 + (1−β1)

[
δL

δwt

]
vt =β2vt−1 + (1−β2)

[
δL

δwt

]2

(3.27)

• Loss function: the loss function measures the difference between predicted and actual values. MAE is
often preferred for its robustness against outliers. It computes the average of the absolute differences
between predictions and true values.

Within different layers, various parameters can be tuned [63] [64] [69]:

• Filters: in convolutional layers, filters refer to the number of learned features. Each filter extracts dif-
ferent features from the input data.
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• Units or dense units: indicate the number of neurons or nodes in a layer.

• Pool size: specifies the window size over which pooling operations are applied.

• Activation function: activation functions in neural networks are like decision-making tools for each
neuron. They decide whether a neuron should be "activated" or not by determining the output of
that neuron based on the input it receives. Think of them as filters that add non-linearities to what
the neuron sees, allowing neural networks to learn complex patterns and relationships in data. These
functions can transform the input data in various ways, like squishing numbers between certain ranges
or only letting positive values pass through.
The tanh activation function is a type of activation function commonly used in neural networks. It
squashes input values to be within the range of -1 to 1, aiding in normalizing the output of a neural
network layer. It is one of the most commonly used when working with time series problems.

Figure 3.18: Tanh vs. logistic sigmoid functions [69]

This systematic arrangement of layers and parameters allows for the construction and optimization of
deep learning models tailored to specific tasks and datasets.

Optimizing hyperparameters in deep learning is pivotal for several fundamental reasons. Hyperparame-
ters, unlike learned parameters, significantly influence a neural network model’s performance and its ability
to generalize to unseen data. Properly tuning these hyperparameters can determine the difference between
a well-performing model and one that fails to achieve satisfactory results.

The impact of hyperparameters is substantial, affecting network architecture, training speed, conver-
gence and the model’s generalizability to new, unseen data. Choices such as learning rate, optimizer se-
lection, the number of layers and neurons and activation functions, among others, all play crucial roles that
need careful adjustment for each specific dataset and problem.

Hyperparameter optimization involves seeking the optimal combination that maximizes the model’s per-
formance while minimizing risks of overfitting or underfitting. This process employs techniques such as grid
search, random search, Bayesian optimization or other automated strategies to explore the hyperparameter
space.

Last, it is important to describe a parameter already mentioned before: overfitting. Overfitting occurs
when a machine learning model learns the training data too well, capturing noise or random fluctuations
in the data rather than the underlying patterns. As a result, the model performs well on the training set but
poorly on unseen or test data, indicating a lack of generalization.

To mitigate overfitting, various techniques can be employed [62] [70]:

• Dropout: it is a regularization technique used during training in neural networks. It randomly drops
(deactivates) a fraction of neurons in a layer during each training step. This prevents individual neurons
from relying too much on specific features, thus promoting more robust learning across the network.
It helps prevent overfitting by creating a more generalized representation of the data.
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• Recurrent dropout: specifically applied in recurrent neural networks, recurrent dropout extends the
concept of dropout to recurrent connections. It drops connections between recurrent units, helping
prevent overfitting in sequential data by introducing noise and reducing reliance on specific temporal
patterns.

• Regularization: it is a technique used to penalize complex models by adding a regularization term to
the loss function during training.
L2 regularization (also known as weight decay) adds the squared magnitude of weights to the loss func-
tion, encouraging smaller weights and preventing any single weight from becoming excessively large.
This helps in preventing the model from fitting noise in the training data and enhances its generaliza-
tion to unseen data.

• Early stopping: involves monitoring the model’s performance on a separate validation dataset during
training. Training stops when the model’s performance on the validation set starts deteriorating, even
if the performance on the training set continues to improve. This prevents the model from becoming
overly specialized to the training data, as it tends to start overfitting when trained for too many epochs.

These techniques collectively aim to counteract overfitting by introducing constraints or modifications
during the training phase, encouraging the model to learn relevant patterns in the data while preventing it
from memorizing noise or peculiarities specific to the training dataset.

Concluding this segment, a robust framework for understanding the mathematical methods and models
essential in assessing engine emissions has been established. As this section draws to a close, the subsequent
chapter will transition into the Exploratory Data Analysis, leveraging the groundwork laid out here. This
progression marks the beginning of a comprehensive exploration of the dataset’s intricacies, facilitating a
deeper understanding of the data, to inform subsequent modeling and predictive analyses.
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Exploratory Data Analysis (EDA)

4.1. Problem statement
In this Thesis, PEMS will be utilized to forecast CO and NOx emissions from a gas turbine. A Python code will
be employed via the Google Colab platform to solve this problem.

The study involves working with a gas turbine emission dataset spanning five years (from January 1st, 2011
to December 31st, 2015) [71]. The dataset consists of hourly average sensor readings of eleven variables, com-
prising 36733 instances. Among these variables, nine serve as input measures (independent variables), while
the remaining two act as target variables. The input measurements can be grouped into ambient variables
and gas turbine process parameters. The data collection takes place within an operational range spanning
from partial load (75%) to full load (100%) [34].

Considering there are 1826 days between 2011 and 2015 (inclusive), theoretically yielding 43824 instances,
it becomes apparent that there are missing measurements. Potential reasons for this discrepancy could be
attributed to sensor failures during operation, resulting in discontinued data collection for certain hours. Ad-
ditionally, it’s plausible that the data collected during those hours might have been excluded from the set.
Another plausible explanation is that the gas turbine wasn’t operational for the entirety of those years, lead-
ing to gaps in the recorded measurements.

It is also important to note that the gas turbine which data has been collected is located in the Turkey’s
northwestern region according to literature [71]. This will be important as some features will be influenced
by the ambient conditions (ambient variables, to say the least).

The figure below depicts the sensor placements and the sources of turbine parameters on the gas turbine.

Figure 4.1: Sensor locations/parameter sources (dashed red rectangles used for parameters and dashed white arrows for sensor
locations) [34]

49
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In order to start addressing the problem subject of this Thesis, it is essential to conduct an initial Ex-
ploratory Data Analysis to gain a comprehensive understanding of the dataset in use. In the following section,
the layers of the dataset will be systematically analyzed, visualizing metrics, histograms or correlation matri-
ces. This approach aims to comprehend how each feature influences the problem, the behavior of output
data or the associated physics behind these aspects.

However, it’s crucial to note that not all generated graphs will be included in the main text of this work
to prevent overwhelming saturation. To manage this, an appendix has been established where all figures will
be provided (Appendix II). Only the most pertinent graphs for understanding the analysis and facilitating
comprehension of the whole text will be incorporated herein. As for the Python code used to implement this
analysis, it can be found on Appendix I.

4.2. Exploratory Data Analysis (EDA)
The initial observation reveals that there are eleven data columns present in each dataset, with identical vari-
ables found across all of them.

AT AP AH AFDP GTEP TIT TAT TEY CDP CO NOx

4.5878 1018.7 83.675 3.5758 23.979 1086.2 549.83 134.67 11.898 0.32663 81.952
4.2932 1018.3 84.235 3.5709 23.951 1086.1 550.05 134.67 11.892 0.44784 82.377
3.9045 1018.4 84.858 3.5828 23.990 1086.5 550.19 135.10 12.042 0.45144 83.776
3.7436 1018.3 85.434 3.5808 23.911 1086.5 550.17 135.03 11.990 0.23107 82.505
3.7516 1017.8 85.182 3.5781 23.917 1085.9 550.00 134.67 11.910 0.26747 82.028

Table 4.1: First five lines of data for the complete dataset

These variables can be grouped in three:

• Ambient variables:

– Ambient Temperature (AT), measured in °C.

– Ambient Pressure (AP), measured in mbar.

– Ambient Humidity (AH), measured in %.

• Gas turbine process parameters:

– Air Filter Difference Pressure (AFDP), measured in mbar.

– Gas Turbine Exhaust Pressure (GTEP), measured in mbar.

– Turbine Inlet Temperature (TIT), measured in °C.

– Turbine After Temperature (TAT), measured in °C.

– Turbine Energy Yield (TEY), measured in MWH.

– Compressor Discharge Pressure (CDP), measured in mbar.

• Emissions:

– Carbon monoxide (CO), measured in mg/m3.

– Nitrogen oxides (NOx ), measured in mg/m3.

Given the objective of predicting emissions using a set of gas turbine variables, it can be affirmed that am-
bient variables and process parameters will function as input variables for this model. Conversely, emissions
will serve as the target variables.

With the presence of input and output variables, the aim is to approximate the mapping function. This en-
ables to predict the output when provided with new input variables. Consequently, this scenario falls within
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the realm of a supervised problem. Moreover, since all variables, including the target or output, are numeri-
cal, this entails that a regression problem is being addressed.

Furthermore, the initial observation of the information associated to each of the variables reveals that all
attributes are numerical (of type float) and there are no null values present in any of the datasets.

The dataset comprises hourly average sensor measurements, possibly accounting for the varying number
of measurements across different years. These measurements are obtained within an operational range span-
ning from partial load (75%) to full load (100%). While specific times of data collection were not recorded, the
dataset is organized chronologically by measurement date [71]. Consequently, the data represent distinct
temporal series that can be visualized for a more comprehensive analysis of their features.

To enhance the analysis of the gas turbine’s operation, the dataset will be indexed based on the hourly
measurements. This indexing aims to improve data traceability and facilitate the plotting of various time se-
ries for a more comprehensive analysis.

Subsequently, an exploration of various methods to fill the missing data will be conducted. To determine
the most suitable approach for handling missing values, their performance will be assessed using a basic GRU
neural network model.

These steps hold significant importance since it will become evident later that certain variables exhibit a
notable dependency on the time of the year under investigation. For instance, ambient temperature demon-
strates a strong correlation with whether the gas turbine operates during summer or winter, displaying a
recurring pattern across different years.

For this scenario, the same n value has been selected for both methods to maintain impartiality regarding
which method might be superior. An n value of 2920 has been chosen, corresponding to a 4-month period.
This choice aims to achieve consistency in the time series across different years, facilitating repeatability,
which should be a common occurrence, at least for certain features.

It’s noteworthy that certain methods, like backward fill, were not tested due to the presence of missing
data spanning over one month at the end of the dataset. In this case, backward fill wouldn’t function appro-
priately since a final value is required to propagate the missing values forward.

As it has been mentioned before, in order to not saturate this report, only the most relevant figures will be
plotted. For this particular case, graphs and tables will only refer to the ambient temperature variable. The
graphs and tables corresponding to the rest of the features can be found in Appendix II.

Figure 4.2: Ambient Temperature graph obtained with forward fill method for filling missing values
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Figure 4.3: Ambient temperature graph obtained with linear interpolation method for filling missing values

Figure 4.4: Ambient temperature graph obtained with seasonal mean (n=2920) method for filling missing values

Figure 4.5: Ambient temperature graph obtained with KNN mean (n=2920) method for filling missing values

MSE MAE

Forward Fill 73.67 7.36
Linear Interpolation 80.25 7.64

Seasonal Mean 49.01 5.66
KNN Mean 57.85 6.52

Table 4.2: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for ambient temperature
feature

Upon visualizing the outcomes obtained from various methods, the determination is that, for the time se-
ries under examination, the most fitting approach would be Seasonal Mean. Across the 11 variables analyzed,
it showcases the lowest Mean Absolute Error (MAE) and Mean Squared Error (MSE) in 8 out of 11 instances
(although the lowest MAE does not invariably translate to the lowest MSE).
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Based on the visualization of the resultant time series, it can be observed that the Seasonal Mean method
provides the most closely aligned time series resembling what would be expected in reality. There is an excep-
tion noted with ambient temperature, where the results obtained could be realistic in certain scenarios (such
as an approximate ambient temperature of 20°C in winter, which might seem unusual but not as implausible
as obtaining 60°C). It’s evident that dividing the result by 2 would address this issue, and this adjustment will
be implemented in the subsequent section to obtain the final feature.

However, the examination of these variations was conducted using a straightforward method. Conse-
quently, by delving into the analysis of the model’s hyperparameters, even more enhanced outcomes could
be attained. Additionally, it’s crucial to highlight that the refinement of results could also be achieved through
the treatment of outliers, but this approach was deemed enough for the initial phase of this analysis.

The Seasonal Mean method will now be applied to all variables to obtain the complete dataset for fur-
ther study in this thesis. Additionally, to facilitate visualization and comparison of these graphs, they will be
smoothed using Locally Weighted Scatterplot Smoothing (LOWESS).

For this particular case, it is indeed considered relevant to plot the corresponding figures for all the vari-
ables, as they will underpin many of the future sections.

Figure 4.6: Ambient temperature with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean and
standard deviation)

Figure 4.7: Ambient pressure with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean and
standard deviation)
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Figure 4.8: Ambient humidity with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean and
standard deviation)

Figure 4.9: Air filter difference pressure with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean
and standard deviation) with abnormal values highlighted

Figure 4.10: Gas turbine exhaust pressure with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing
mean and standard deviation)
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Figure 4.11: Turbine inlet temperature with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean
and standard deviation) with abnormal values highlighted

Figure 4.12: Turbine after temperature with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean
and standard deviation) with abnormal values highlighted

Figure 4.13: Turbine energy yield with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean and
standard deviation)
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Figure 4.14: Compressor discharge pressure with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing
mean and standard deviation)

Figure 4.15: Carbon monoxide emissions with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing
mean and standard deviation) with abnormal values highlighted

Figure 4.16: Nitrogen oxides emissions with Seasonal Mean (n=2920) for filling missing values and LOWESS smoothing (showing mean
and standard deviation) with abnormal values highlighted

Based on these graphs, initial assumptions can be formulated, which will subsequently be elucidated and
expanded upon in further detail.

The repetitive pattern previously mentioned for certain variables is already discernible, notably in ambi-
ent temperature, which exhibits the most conspicuous repetition.
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In the case of other graphs, the proximity of values results in a significant level of noise upon slight
changes, making it challenging to discern the actual trend followed by the variable. To address this issue,
smoothed graphs have also been plotted to offer a clearer depiction of the underlying tendencies.

Finally, even though this marks the conclusion of the Exploratory Data Analysis, certain graphs exhibit
indications of outliers. For instance, a significant majority of carbon monoxide emissions values fall within
the range of 0 to 10 mg/m3. However, there are numerous values that extend well beyond this interval. This
observation suggests the potential existence of numerous outliers for this particular variable, necessitating
further examination and consideration for appropriate treatment.

Peaks, potentially indicating outliers, are also noticeable in air filter difference pressure, turbine inlet tem-
perature, turbine after temperature or nitrogen oxides emissions. Certain peaks have been highlighted in the
graphs for visual emphasis, although not all have been highlighted to avoid overwhelming the graph with
excessive noise.

As previously indicated, ambient variables such as temperature, pressure and humidity are expected to
correlate with the typical values in the region where the gas turbine operates. For instance, during winter
months, temperatures should be lower compared to summer months, while pressure may correspond to the
local weather patterns characteristic of different periods throughout the year in that region.

Before proceeding with this Data Analysis, it’s essential to acknowledge that certain variables will exhibit
similar patterns due to their direct interrelation governed by thermodynamic laws.

For instance, upon reviewing the preceding graphs, it is likely that air filter difference pressure and gas
turbine exhaust pressure are correlated. Additionally, gas turbine exhaust pressure, turbine energy yield and
compressor discharge pressure appear to be interconnected variables based on their observed patterns.

Prior to delving further into this aspect, it has been deemed essential for this analysis to initially generate
histograms illustrating the periodicity of the various variables at hand.

Figure 4.17: Histograms for ambient temperature, ambient pressure and ambient humidity, respectively

Figure 4.18: Histograms for air filter difference pressure, gas turbine exhaust pressure and turbine inlet temperature, respectively
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Figure 4.19: Histograms for turbine after temperature, turbine energy yield and compressor discharge pressure, respectively

Figure 4.20: Histograms for carbon monoxide emissions and nitrogen oxides emissions, respectively

Given that the data originates from a gas turbine situated in Turkey’s northwestern region [71], variables
associated with temperature, pressure, and humidity are profoundly influenced by the climate prevailing in
that specific area.

As an initial observation, examining these three graphs suggests that the data likely corresponds to a loca-
tion near or similar to Istanbul. Ambient pressures exhibit minor fluctuations around the reference ambient
pressure (1013 mbar or 1 atm), while ambient temperatures align with the typical data linked to this region of
the globe, ranging between 5 and 30°C depending on the time of year [72].

It can be inferred that certain features exhibit values that significantly outnumber the counts of other
recorded values, indicating a higher frequency of repetition. In addition to the previously mentioned features
like ambient temperature and ambient pressure, higher occurrences of specific values in ambient humidity
are attributable to the proximity of the gas turbine’s location to the sea or its location in a very humid or
rainy region. Moreover, the most frequently repeated values in turbine inlet temperature and turbine after
temperature, surpassing other values in recurrence, likely stem from the gas turbine’s operation adhering to
a well-defined thermodynamic cycle. This cycle is typically optimized to ensure the gas turbine generates
maximum thrust while minimizing fuel consumption, achieving a balanced solution.

These graphs reveal discernible patterns indicating that certain features adhere to well-known distribu-
tions:

• Ambient temperature demonstrates characteristics akin to a binomial distribution, albeit exhibiting
slight deformations at certain points. It displays a relatively uniform distribution of values, mirroring
the behavior observed in ambient pressure and nitrogen oxides emissions variables.

• Ambient humidity follows a Poisson distribution, skewed left, similar to the distribution observed in
turbine after temperature.

• Carbon monoxide emissions conform to a skewed right distribution.

• The remaining features depict multimodal distributions.

Another noteworthy observation derived from the histograms, particularly when focusing solely on the
target variables, is that nitrogen oxides emissions exhibit considerably higher values compared to carbon
monoxide emissions.
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Certain values within the dataset also appear to be misattributed to specific features. For instance:

• Gas turbine exhaust pressure should resemble ambient pressure, yet this similarity is not observed.

• Compressor discharge pressure values are expected to be higher than the recorded values in the dataset.
Upon closer inspection, it appears that the feature might represent the compressor Pressure Ratio (PR),
which typically assumes a dimensionless nature, rather than compressor discharge pressure.

At this stage, the intention is not to analyze the outliers. However, it is worth noting that certain his-
tograms display an elongated distribution, stretching far from the area where the most frequently occurring
values are situated. This suggests that these variables are likely to contain outliers.

For enhanced analysis and understanding of relationships between features and target variables, it is of-
ten advantageous to visualize the correlation matrix among the variables.

Figure 4.21: Pearson correlation matrix

The initial examination of the matrix reveals a trend that might have been apparent from the outset: am-
bient variables and gas turbine process variables generally exhibit weak correlations. Conversely, gas turbine
process parameters showcase strong interrelationships among themselves, wherein turbine after tempera-
ture displays the weakest correlation among these parameters.

Moreover, it’s evident that carbon monoxide emissions are more significantly impacted by gas turbine
process variables compared to nitrogen oxides emissions.

Upon closer examination of the target variables, it becomes apparent that lower turbine inlet tempera-
ture correlates with increased production of carbon monoxide emissions. This relationship aligns logically,
considering that incomplete combustion at lower temperatures tends to generate more CO, as indicated by
the negative correlation coefficient of approximately -0.7.

Regarding nitrogen oxides emissions, the most prominent association identified is with ambient tem-
perature, exhibiting a correlation coefficient of approximately -0.51. This suggests that operating at higher
temperatures serves as an effective method to reduce NOx emissions.

It’s notably evident that compressor discharge pressure, gas turbine exhaust pressure, turbine energy yield
and turbine inlet temperature exhibit strong interrelationships among themselves.

Air filter difference pressure and turbine after temperature also demonstrate notable relationships with
those variables, albeit not as robust as the previously mentioned associations.
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The decision was made to contrast the linear correlation matrix acquired via the Pearson coefficient with
the non-linear correlation matrix obtained using the Kendall coefficient. Kendall was preferred over Spear-
man due to its tendency to yield more reliable outcomes, particularly in scenarios featuring outliers within
the dataset (as previously observed and set for analysis later on).

Figure 4.22: Kendall correlation matrix

Upon comparing both matrices, it is apparent that the relationship between variables generally appears
weaker in the non-linear analysis compared to the linear assessment. However, the discrepancy is relatively
minor. Therefore, it is reasonable to assume that the results derived from the linear matrix can be considered
valid and applicable throughout the experiment.

At this juncture, it becomes crucial to consider the physical context of the problem as it offers significant
insights into the relationships between various variables, serving as a complement to the Data Analysis.

Multiple interactions within the gas turbine process parameters need consideration, as these parameters
adhere to fundamental thermodynamic laws.

In a gas turbine system, a rise in turbine inlet temperature implies a greater amount of thermal energy
accessible for conversion into work within the turbine. Consequently, this leads to an elevation in the power
output. This correlation plays a pivotal role in the energy performance of the turbine, as a higher inlet tem-
perature typically augments the turbine’s efficiency and power generation capacity. Conversely, a lower inlet
temperature can negatively impact its performance.

Consequently, turbine after temperature should elevate in tandem with turbine energy yield.

Raising compressor discharge pressure (representing compressor pressure ratio) signifies that the com-
pressor must exert more effort to attain a heightened pressure level. This action could potentially affect the
overall efficiency of the gas turbine system. Consequently, it could also contribute to an increase in turbine
energy yield. However, practical limitations may exist regarding the extent to which compressor discharge
pressure can be elevated.

Moreover, it’s typically observed that gas turbine exhaust pressure tends to enhance turbine energy yield
by extracting additional work from exhaust gases.

In the context of a gas turbine, when the compressor elevates air pressure (compressor discharge pres-
sure), it typically implies that the turbine extracts more energy from the exhaust gases (resulting in higher
gas turbine exhaust pressure). Consequently, these factors are interconnected: increased compression often
correlates with higher exhaust pressure.



4.2. Exploratory Data Analysis (EDA) 61

Ambient temperature and ambient pressure have a direct influence on turbine energy yield. Elevated
ambient temperature can potentially diminish turbine energy yield due to the presence of less dense air and
reduced oxygen available for combustion. Conversely, increased ambient pressure generally augments tur-
bine energy yield by supplying a greater volume of air for combustion.

It’s crucial to recognize that these relationships represent ideal scenarios. In reality, the operation of a gas
turbine is influenced by numerous variables that extend beyond the scope of this particular study.

Another significant aspect to consider regarding ambient variables is the application of the ideal gas law,
which states that P·V=n·R·T. From this law, it can be deduced that ρ = P/RT . Although this law is purely theo-
retical and represents an ideal scenario, it implies the existence of a mathematical expression linking ambient
pressure and ambient temperature. This point will be further developed in the next chapter of this work.

To delve deeper into this topic, the next step involves visualizing the correlation matrix for the initial year
(2011) during two distinct seasons of the year: summer and winter. This analysis will focus on January 1st
and August 1st as representative days for these seasons.

This approach will facilitate the identification of correlations that might be evident only during particular
seasons of the year.

Figure 4.23: Pearson correlation matrix for winter period (January 1st, 2011)

Figure 4.24: Pearson correlation matrix for summer period (August 1st, 2011)
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From these matrices, notable observations emerge.

During summer, there is a stronger correlation among ambient variables compared to the winter period.
Additionally, it’s intriguing to note that while ambient pressure and humidity exhibit an inverse relationship
during winter, they demonstrate a direct relationship during summer.

Overall, ambient temperature displays weaker correlations with gas turbine process parameters during
summer compared to winter, except for three instances: notably high correlations are observed with turbine
after temperature (-0.97 compared to 0.16) and nitrogen oxides emissions (-0.95 compared to 0.37) during
winter. Additionally, there is a correlation factor of 0.3 for carbon monoxide emissions during winter, con-
trasting with a -0.84 factor during summer.

Ambient pressure, however, generally exhibits stronger correlations with gas turbine process parameters
during summer. Concerning ambient humidity, the correlation values remain similar between both seasons,
except for specific variables: turbine after temperature (0.7 during winter and -0.058 during summer), car-
bon monoxide emissions (0.081 during winter and 0.81 during summer) and nitrogen oxides emissions (0.71
during winter and -0.49 during summer).

Among gas turbine process parameters, turbine after temperature exhibits notably stronger correlations
with other parameters during winter compared to summer. Notably, during winter, it displays an inverse rela-
tionship with other parameters, whereas during summer, it demonstrates a direct relationship with all other
parameters.

In winter, nitrogen oxides emissions showcase stronger correlations with these parameters, whereas for
carbon monoxide emissions, the opposite trend is observed.

Regarding the correlation between both types of emissions, their relationship is twice as strong during
summer compared to winter, although the correlation value in either case is not particularly high.

Now, supplementary graphs supporting all the hypotheses aforementioned will be presented below.

Thus, it is possible to visualize some of the hypotheses made earlier, particularly emphasizing the depen-
dency among all gas turbine process parameters, with specific emphasis on turbine energy yield, compressor
discharge pressure and gas turbine exhaust pressure.

For improved visualization of dependencies between target variables and other features, lmplots will be
employed.

Figure 4.25: Lmplot for carbon monoxide emissions (I)
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Figure 4.26: Lmplot for carbon monoxide emissions (II)

Figure 4.27: Lmplot for carbon monoxide emissions (III)

Figure 4.28: Lmplot for carbon monoxide emissions (IV)

As previously mentioned, the dependency of carbon monoxide emissions primarily relates to gas turbine
process parameters rather than ambient variables. Additionally, as previously observed, the most significant
relationship exists with turbine inlet temperature.
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Figure 4.29: Lmplot for nitrogen oxides emissions (I)

Figure 4.30: Lmplot for nitrogen oxides emissions (II)

Figure 4.31: Lmplot for nitrogen oxides emissions (III)
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Figure 4.32: Lmplot for nitrogen oxides emissions (IV)

In the case of nitrogen oxides emissions, their correlation leans more towards ambient variables, although
they are also influenced by gas turbine process parameters. As previously observed, the most prominent re-
lationship exists with ambient temperature. It is noteworthy that carbon monoxide emissions appear to exert
a substantial influence on nitrogen oxides emissions as well.

Figure 4.33: Pairplot for the different variables
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To validate the previously made assumptions, seasonal plots will be generated to confirm which variables
exhibit a recurring pattern across different years. To achieve this, a new smoothing technique, Savitzky-Golay
filtering, will be utilized.

A consolidated approach involving the plotting of multiple time series on the same graph will be imple-
mented to verify the applicability of the earlier hypotheses concerning relationships between variables.

Figure 4.34: Ambient temperature seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.35: Ambient pressure seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.36: Ambient humidity seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)
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Figure 4.37: Air filter difference pressure seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.38: Gas turbine exhaust pressure seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.39: Turbine inlet temperature seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)
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Figure 4.40: Turbine after temperature seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.41: Turbine energy yield seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.42: Compressor discharge pressure seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)
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Figure 4.43: Carbon monoxide emissions seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.44: Nitrogen oxides emissions seasonal plot with Savitzky-Golay filtering (showing mean and standard deviation)

Figure 4.45: Time series comparison after normalization

As anticipated, these graphs furnish us with valuable insights and information.

Ambient temperature demonstrates a recurring pattern that repeats annually, aligning with the typical
temperatures anticipated in each month within the Turkish region [72].
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Ambient pressure is also expected to exhibit a recurring pattern. However, visualizing this pattern is chal-
lenging due to the closely proximate values.

Ambient humidity appears to be significantly influenced by other ambient variables. However, a dis-
cernible pattern is observed solely for the initial three years. Previous plots have indicated notably lower
humidity values specifically in 2015 compared to the other years.

Gas turbine exhaust pressure, being significantly influenced by ambient variables, exhibits a recurring
pattern that repeats annually, although certain values stand out from the norm, potentially indicating out-
liers.

Turbine inlet and after temperatures adhere to a similar pattern observed in ambient pressure; however,
the closely proximate values between them make it challenging to definitively confirm the existence of dis-
tinct patterns.

Finally, it appears that nitrogen oxides emissions exhibit a consistent trend across the recorded years,
albeit with potential outliers present. The trend notably falters during 2014 and 2015, where more distant
values are observed, potentially indicating the presence of outliers during those periods.

An intriguing observation is the remarkable similarity in the trajectory of turbine energy yield, compres-
sor discharge pressure and gas turbine exhaust pressure across the various years, a pattern more distinctly
visible in the final graph. However, there is a notable divergence in the trajectories of ambient humidity, air
filter difference pressure and turbine inlet temperature, although they exhibit some semblance of similarity
among themselves.

The behavior of turbine after temperature is notably intriguing, as it demonstrates an inverse pattern
compared to the other variables, albeit with periods where the divergence is significantly more pronounced.

Ambient temperature and ambient pressure have not been included in the plot, as it is evident that they
do not exhibit a similar trend as the other variables.

The next step in this Data Analysis involves conducting a time series decomposition for the various vari-
ables. For this particular case, only additive decomposition can be used, as multiplicative doesn’t work cor-
rectly for data with negative values (which is the case for some of the present features).

As before, in order to not saturate this work, only the graphs corresponding to ambient temperature will
be presented.

Figure 4.46: Original time series and trend for ambient temperature feature with additive decomposition
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Figure 4.47: Seasonality plot for ambient temperature feature with additive decomposition

Figure 4.48: Decomposition residuals (noise) for ambient temperature feature with additive decomposition

Several observations align with previously noted patterns and trends evident in the data.

• Ambient temperature is almost perfectly periodic between the different years, with residuals being
quite low.

• Trend is almost constant for ambient temperature, ambient pressure, gas turbine exhaust pressure,
turbine inlet temperature, turbine energy yield, compressor discharge pressure and carbon monoxide
emissions.

• Ambient humidity loses its trend during 2014 and 2015, and the residual is higher than for the previous
variables.

• Air filter difference pressure has a varying trend but a very low residual. The residual value for compres-
sor discharge pressure is also very low.

• Turbine inlet temperature and turbine energy yield have a much higher residual value than turbine
after temperature and gas turbine exhaust pressure.

• Residuals for carbon monoxide and nitrogen oxides emissions are very high.

As anticipated from earlier hypotheses, the only variable distinctly exhibiting a periodic trend is ambient
temperature. Variables with elevated residual values are likely to encompass a higher concentration of out-
liers.

Subsequently, assessing the stationarity of the time series proves beneficial, for which the implementation
of ADF and KPSS tests will be considered:
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ADF KPSS

AT 1.30·10−5 0.087
AP 1.87·10−26 0.070
AH 5.61·10−26 0.010

AFDP 4.67·10−15 0.010
GTEP 2.03·10−28 0.010

TIT 4.73·10−29 0.010
TAT 9.31·10−25 0.010
TEY 7.08·10−28 0.012
CDP 2.44·10−28 0.021
CO 2.29·10−28 0.010

NOx 1.14·10−14 0.010

Table 4.3: Results for ADF and KPSS tests for the different features

Examining the outcomes, it becomes apparent that the trends deemed stationary include ambient hu-
midity, air filter difference pressure, gas turbine exhaust pressure, turbine inlet temperature, turbine after
temperature, turbine energy yield, carbon monoxide emissions and nitrogen oxides emissions.

None of the time series can be considered stationary as per this test (which makes sense with the previous
visualized graphs).

To extend this analysis, the next step involves attempting to detrend the time series. In this scenario, the
approach involves subtracting the trend component acquired from the earlier time series decomposition.

For this specific case, the only figures that will be presented hereafter are the ones for ambient pressure,
carbon monoxide emissions and nitrogen oxides emissions.

Figure 4.49: Detrended plot for ambient pressure feature

Figure 4.50: Detrended plot for carbon monoxide emissions feature
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Figure 4.51: Detrended plot for nitrogen oxides emissions feature

The prominent observation from these graphs remains consistent with our previous understanding: cer-
tain features notably exhibit a substantial number of outliers.

This is particularly evident in instances of ambient pressure, ambient humidity, air filter difference pres-
sure, turbine inlet temperature and turbine after temperature. However, it is particularly notable in the case
of carbon monoxide emissions and nitrogen oxides emissions.

To explore this matter further, the next step involves analyzing the seasonality within the time series data.
In this case, in order to observe two different behaviours, the graphs plotted will be the ones for ambient
temperature and ambient pressure.

Figure 4.52: Seasonality plot for ambient temperature feature

Figure 4.53: Seasonality plot for ambient pressure feature
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Regarding the prior observations, ambient temperature demonstrates a distinctive pattern. Its seasonal-
ity is identifiable by a sinusoidal wave recurring every year (around 8760 lags), indicating a yearly seasonal
pattern in the feature.

Similar patterns are observable in some other features, although their patterns appear less distinct, pos-
sibly due to the presence of substantial noise, likely stemming from outliers within the data.

Air filter difference pressure, for example, does not demonstrate a clear seasonal behavior, likely influ-
enced by the presence of outliers affecting its pattern.

Turbine inlet temperature and gas turbine exhaust pressure, due to their closely distributed values, are
challenging to visually assess in terms of seasonal patterns. However, this lack of visibility doesn’t significantly
impact the analysis, as we’ve previously identified trends and smoother representations of these variables.

The level of seasonality observed in nitrogen oxides emissions appears to be more pronounced compared
to carbon monoxide emissions, potentially influenced by the presence of outliers in both datasets.

The upcoming process involves plotting Autocorrelation and Partial Autocorrelation graphs for all the
features under study. For this analysis, 8760 lags were employed, signifying an examination of the initial
complete year of data.

For this case, only the graphs corresponding to ambient temperature will be plotted.

Figure 4.54: ACF plot for ambient temperature feature

Figure 4.55: PACF plot for ambient temperature feature
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The observed pattern shows that most lags either approximate 1 or are significantly above the confidence
interval, indicating statistical significance for all variables.

In the case of ambient humidity, gas turbine exhaust pressure, turbine inlet temperature, turbine energy
yield, compressor discharge pressure and carbon monoxide emissions, it’s evident that several lags fall below
0.25, indicating significantly lower statistical significance compared to the other lags in these features. Nev-
ertheless, though statistically signficant, all features’ partial autocorrelation after the first few lags is very low.

Lag plots are intimately related with autocorrelation. They are useful for identifying autocorrelation in a
time series, aiding in selecting appropriate models for time series analysis and forecasting. They can comple-
ment ACF and PACF analyses.

Only the lag plot graphs corresponding to ambient variables will be plotted.

Figure 4.56: Lag plot for ambient temperature feature

Figure 4.57: Lag plot for ambient pressure feature

Figure 4.58: Lag plot for ambient humidity feature
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As observed, the only features demonstrating autocorrelation with themselves are the ambient variables,
particularly highlighting ambient pressure.

In conclusion for this section, the focus will shift towards studying the forecastability of the time series
data.

Entropy

AT 3.42
AP 3.21
AH 4.02

AFDP 1.09
GTEP 2.78

TIT 4.21
TAT 3.27
TEY 4.10
CDP 1.43
CO 2.16

NOx 3.80

Table 4.4: Forecastability entropy for the different features

The computed entropy values generally do not demonstrate high levels, with the lowest values attributed
to air filter difference pressure and compressor discharge pressure. These will thus be the features with the
higher predictability (forecastability).

At this juncture, it is possible to examine potential outliers within the dataset. To initiate this process,
exploring the data’s metrics will be the first step.

AT AP AH AFDP GTEP TIT TAT TEY CDP CO NOx

Count 43824 43824 43824 43824 43824 43824 43824 43824 43824 43824 43824
Mean 16.46 1012.85 77.89 3.95 25.47 1081.51 546.27 133.18 12.04 2.33 65.24

Std. deviation 7.40 5.99 13.48 0.72 3.91 16.35 6.36 14.57 1.02 2.10 10.80
Minimum -6.23 985.85 24.09 2.09 17.70 1000.80 511.04 100.02 9.85 0.00 25.91

25% 10.22 1009.30 69.92 3.48 23.39 1074.00 545.13 126.18 11.53 1.23 58.53
50% 15.42 1012.30 79.60 4.00 25.09 1085.00 549.80 133.66 11.96 1.77 64.09
75% 22.51 1016.10 88.09 4.35 27.17 1093.80 550.02 138.91 12.45 2.72 70.25

Maximum 37.10 1036.60 100.20 7.61 40.72 1100.90 550.61 179.50 15.16 44.10 119.91

Table 4.5: Statistical metrics for the complete dataset

Based on the statistical data derived from the gas turbine parameters and the aforementioned outcomes,
certain assumptions can now be formulated:

• The minimum ambient temperature reached on 2015, even though can be due to a extreme climate
situation, can be considered as an outlier, as it distances too much from the normal temperatures ex-
pected in Turkey.

• The amount of NOx emissions oscillate much between different years.

• The minimum amount of NOx emissions are really different between years.

• The minimum ambient humidity oscillates between different years.

• The standard deviation of turbine inlet temperature during 2015 is greater than for the rest of the years.
The standard deviation for turbine after temperature varies greatly between years, as well as the one for
turbine energy yield. This can mean that those values are not promediated as indicated at the beginning
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of this work, but rather calculated, due to the fact that sensor data were promediated in hourly intervals,
for which a small standard deviation would be expected.

In order to finish visualizing the outliers and closing the Exploratory Data Analysis related to this work,
box plots for the different features will be presented.

Only the box plots corresponding to ambient temperature and nitrogen oxides emissions will be pre-
sented. The rest can be found in Appendix II.

Figure 4.59: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for ambient temperature feature

Figure 4.60: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for nitrogen oxides emissions feature

Another informative aspect for this preliminary outlier analysis is to visualize the relative (percentage)
and absolute change in values across the entire period (2011-2015) for all the variables. This method will fa-
cilitate the identification of outliers within the dataset.

For this case, only the graph for carbon monoxide emissions will be presented herein.
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Figure 4.61: Relative change for carbon monoxide emissions feature over the years

Figure 4.62: Absolute change for carbon monoxide emissions feature over the years

These graphs confirm the observations derived from statistical data and provide additional insights.

The first one that stands out is that 2015 is the year that presents the highest number of outliers for all
features.

The data reveals that the initial and final months of the year tend to accumulate the highest number of
outliers, with November being quite particular for all features.

The boxplots indicate a considerable presence of outliers within the measurements of ambient humidity,
air filter difference pressure, carbon monoxide emissions and nitrogen oxides emissions. Additionally, no-
table values are visible in turbine inlet temperature or ambient pressure. However, it is crucial to consider
that certain extreme values might be entirely valid from a physical standpoint, such as those observed for
ambient pressure.

Diverse fuel types can cause variations in temperatures before and after the turbine, despite generally
using the same fuel across all engines. Elevated levels of CO during transient gas turbine operations, such as
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startup or warm-up periods, are common, although these phases are typically brief.

The absolute and relative change graphs indicate potential outlier treatment necessary for carbon monox-
ide emissions and nitrogen oxides emissions. Additionally, outliers are noticeable in ambient temperature,
particularly in early 2015. Regarding ambient pressure, although "spikes" are visible in the graphs, upon
closer inspection of the values, the changes appear minor.

In the upcoming chapter, determinations will be made regarding the outliers to be retained and those to
be eliminated from the dataset.





5
CO and NOx emissions prediction

5.1. Experimental procedure
5.1.1. Feature engineering
The feature engineering section of this Thesis serves as a pivotal aspect in the construction of predictive mod-
els, emphasizing the transformation and creation of meaningful variables from raw data.

This section aims to detail the intricate process of selecting, deriving and refining features that contribute
significantly to the model’s predictive power while addressing issues such as handling missing values or scal-
ing variables. The application of domain knowledge, statistical methodologies and algorithmic techniques is
thoroughly explored to enhance the quality and effectiveness of the predictive model’s input features, thereby
improving its overall performance and robustness in real-world applications.

As previously stated in the preceding chapter, a mathematical relationship between ambient pressure and
ambient temperature has been identified. Consequently, the initial step involves plotting the graph for the
ratio of ambient pressure to ambient temperature (P/T), which is expected to exhibit a relatively consistent
pattern.

Figure 5.1: Ratio of ambient pressure to ambient temperature (P/T)

The observed trend indicates a predominantly linear pattern, suggesting constancy; however, notably ex-
treme values are evident, particularly noted at the beginning of 2015.

Upon examining the preceding chapter’s final graphs related to ambient temperature, a resemblance be-
tween the graph for ambient temperature relative change and the current graph is apparent. 2015 emerges
as the year marked by notably extreme ambient temperature values, notably during January and February,
exhibiting an accumulation of outliers during these months.

81
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Throughout this text, emphasis has been placed on the significance of outliers in data analysis, signifi-
cantly influencing modeling and subsequent results. Consequently, addressing outliers before commencing
modeling is a common practice.

In this context, the approach involving the interquartile range method will be utilized to manage outliers,
although numerous alternative methods exist, such as z-score or clustering methods.

In the process, a grand total of 8335 instances were altered and substituted with the mean value of every
analyzed feature. This accounts for roughly 19% of the initial dataset. It’s crucial to highlight that the mean
value for each feature was calculated without considering outlier values.

To assess whether the dataset’s visual representation has improved post-cleaning, we will revisit some of
the previous graphs and examine the updated metrics for a clearer evaluation.

As on the previous chapter, only the box plots corresponding to ambient temperature and nitrogen oxides
emissions will be presented. The rest can be found in Appendix II.

Figure 5.2: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for ambient temperature feature after outliers removal

Figure 5.3: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for nitrogen oxides emissions feature after outliers
removal
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AT AP AH AFDP GTEP TIT TAT TEY CDP CO NOx

Count 43824 43824 43824 43824 43824 43824 43824 43824 43824 43824 43824
Mean 16.46 1012.66 78.39 3.91 25.09 1082.73 548.36 131.42 11.91 1.89 64.16

Std. deviation 7.40 5.09 12.72 0.65 3.47 14.55 2.74 11.58 0.84 0.98 8.70
Minimum -6.23 999.10 42.67 2.19 17.74 1044.40 537.80 107.11 10.16 0.00 41.02

25% 10.22 1009.50 70.58 3.48 23.39 1075.72 548.36 127.20 11.57 1.23 58.56
50% 15.42 1012.40 79.60 3.96 25.09 1085.00 549.80 132.83 11.91 1.77 64.10
75% 22.51 1015.60 88.09 4.32 26.33 1093.80 550.02 134.92 12.22 2.29 69.16

Maximum 37.10 1026.30 100.20 5.66 32.84 1100.90 550.61 157.99 13.82 4.95 87.82

Table 5.1: Statistical metrics for the complete dataset after outliers removal

Overall, improvements are observed compared to the previous chapter, notably indicated by smaller stan-
dard deviation values across all features (except for ambient temperature, which has the same standard devi-
ation value in both cases).

Considering that the standard deviation values remain notably high and that the feature values exhibit
considerable dispersion, the decision was made to implement Butterworth filtering on the various features.
This step aims to assist the future models in achieving improved predictive performance, as certain models
typically struggle to capture such significant dispersion of values.

The figures below depict the original values alongside their filtering, showcasing graphs specifically for
carbon monoxide and nitrogen oxides emissions in this section. Additional graphs for the remaining features
can be found in Appendix II.

Figure 5.4: Carbon monoxide emissions feature and butterworth filtering after outliers removal

Figure 5.5: Nitrogen oxides emissions feature and butterworth filtering after outliers removal

Prior to commencing the modeling process, an essential step involves determining the statistical signif-
icance of variables and identifying any potentially less influential ones. To accomplish this task, Canonical
Correlation Analysis (CCA) will be employed.
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Figure 5.6: Canonical Correlation Analysis for carbon monoxide emissions

Figure 5.7: Canonical Correlation Analysis for nitrogen oxides emissions

The most notable observation is the significantly higher normalized weights of the features for carbon
monoxide emissions compared to nitrogen oxides emissions. Additionally, it is evident that the features in-
dicated in the graphs as having the highest normalized weights do not encompass those with the strongest
Pearson correlations.

The features with the highest normalized weights for each case are:

• Ambient temperature, ambient pressure, ambient humidity, air filter difference pressure, turbine inlet
temperature and compressor discharge pressure for carbon monoxide emissions.

• Ambient pressure, air filter difference pressure and gas turbine exhaust pressure for nitrogen oxides
emissions.

Furthermore, the number of features selected to represent the 95% of the cumulated importance (thus,
the ones to be employed for feature selection) are:

• Ambient temperature, ambient humidity, gas turbine exhaust pressure, turbine inlet temperature, tur-
bine energy yield and compressor discharge pressure to represent carbon monoxide emissions.

• Ambient temperature, ambient humidity, turbine inlet temperature, turbine energy yield and compres-
sor discharge pressure to represent nitrogen oxides emissions.

Having identified the appropriate features for each target variable, it becomes imperative to consider the
scaling of these features. This is essential due to the variations in scale and dimensions across different fea-
tures.
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As emphasized in preceding chapters, the normalization process involves subtracting the mean and di-
viding by the standard deviation of the training set. Although the delineation into train, validation and test
sets is beyond the scope of this section, an overview will be provided to facilitate understanding of the nor-
malization procedure. It is expected that data pertaining to 2011 and 2012 will serve for training, 2013 for
validation, and 2014 as well as 2015 for testing.

Upon completion of this process, there will be a distribution of 17544 samples for training, 8760 samples
for validation and 17520 samples for testing.

Integrating this normalization technique with the earlier feature selection of the most relevant variables
will culminate in the creation of the final dataset intended for modeling purposes.

5.1.2. Modeling
Given the presence of two distinct target variables (carbon monoxide emissions and nitrogen oxides emis-
sions), this section will be bifurcated accordingly. The initial focus will center on the prediction of carbon
monoxide emissions, followed by the subsequent exploration pertaining to the prediction of nitrogen oxides
emissions.

The data generator utilized in both cases remains consistent, differing only in the data associated with
the specific target variable being modeled. It generates a tuple (samples, targets), where samples represent a
batch of input data and targets correspond to the array of the targeted emissions. The input parameters for
this generator are as follows:

• lookback: observations extend back over a period of 10 days.

• delay: target predictions are set for 24 hours in the future.

• mini ndex and maxi ndex : these indices are determined based on the number of samples allocated for
the train, validation and test sets, as detailed in the previous section.

• shuffle: given the dependency on periodic features, maintaining the order of data is crucial; hence, the
data will not be shuffled.

• batch size: set at 128.

• step: observations will be sampled at intervals of one point per 12 hours.

This sampling strategy aligns with the tensorized data requirement of the employed models (1D CNN and
GRU).

Preceding the explanation of the utilized models, it is imperative to emphasize that the selection of vari-
ables and parameters involved a thorough iterative process rather than random selection. Initially, a founda-
tional model was established, followed by iterative parameter adjustments. Continuous evaluation for over-
fitting was pivotal due to the dataset’s limited size and the prominent presence of overfitting in early trials.

Hence, constructing a model with minimized overfitting, yielding relatively good results and possessing
manageable computational costs was essential. Some models can take hours to run, especially when assess-
ing numerous hyperparameters, underscoring the importance of efficiency in model performance evalua-
tion.

To construct the generator and models utilized in this Thesis, the process outlined by François Chollet
(creator of the Keras deep learning library) in ref. [62] has been employed.

This entailed the need to parse the data, which involved transforming the data into a format that is com-
prehensible and suitable for utilization by the data generator.

To enable the comparison of model performance across various scenarios, identical models were em-
ployed for both the prediction of carbon monoxide emissions and nitrogen oxides emissions.
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The GRU model utilized a single GRU layer, considering that simpler models with fewer layers tend to be
more resilient against overfitting and require less computational cost, being faster to converge to a solution.

To address overfitting concerns, L2 regularization, dropout and recurrent dropout were incorporated. Ad-
ditionally, early stopping was implemented for this purpose. Given the time series nature of the data, the
model employed the Adam optimizer and MAE loss function.

A final Dense layer has also been implemented. In deep learning problems, as already explained, the ne-
cessity of a final Dense layer lies in its ability to perform the ultimate classification or regression task. This
Dense layer is utilized to transform the features extracted by preceding layers into interpretable predictions.

Regarding hyperparameter optimization, various configurations of GRU units and learning rate values
were explored to enhance training outcomes and develop an improved model for testing. Upon finalization
of the training phase, the following values were selected:

• 32 GRU units for CO emissions prediction and 64 for NOx emissions prediction.

• 0.0001 learning rate for both cases.

In the figures below, representations of the various models’ structures are depicted. Special attention
should be given to the previously mentioned fact in earlier chapters: as input values for the different layers
change dimensions, the models’ layers change their input/output tensor dimensions accordingly.

Figure 5.8: GRU model plot for carbon monoxide emissions prediction (with dimensions)

Figure 5.9: GRU model plot for nitrogen oxides emissions prediction (with dimensions)
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The 1D CNN model, conversely, tackles overfitting concerns by using L2 regularization, dropout and early
stopping. Similar to the previous scenario, the model utilized the Adam optimizer and MAE loss function,
along with the tanh activation function. Additionally, MaxPooling1D and GlobalMaxPooling1D layers were
utilized. As in the previous case, a final Dense layer has also been employed.

Regarding hyperparameter optimization, various configurations of CNN filters, pool size and learning
rate values were explored. Upon finalization of the training phase, the following values were selected:

• 64 CNN filters for CO emissions prediction and 32 for NOx emissions prediction.

• 3 pool size for MaxPooling1D and GlobalMaxPooling1D for both cases.

• 5×10−5 learning rate for both cases.

Figure 5.10: 1D CNN model plot for carbon monoxide emissions prediction (with dimensions)
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Figure 5.11: 1D CNN model plot for nitrogen oxides emissions prediction (with dimensions)

Once the utilized models along with their defined parameters have been explored, the upcoming section
will focus on visualizing and analyzing the results obtained for each case.

5.2. Experimental results

Upon implementing the models elucidated in the preceding section, the graphs depicting MAE against epochs
(epochs represent the number of complete passes through the entire dataset during the training process) are
as follows:
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Figure 5.12: MAE vs. epochs during training and validation for GRU model for CO emissions prediction

Figure 5.13: MAE vs. epochs during training and validation for 1D CNN model for CO emissions prediction

Figure 5.14: MAE vs. epochs during training and validation for GRU model for NOx emissions prediction
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Figure 5.15: MAE vs. epochs during training and validation for 1D CNN model for NOx emissions prediction

As depicted in the figures above, overfitting becomes evident after a few epochs in most cases, indicated
by the pivotal point where the training loss becomes lower than the validation loss. The most favorable per-
formance is exhibited by the 1D CNN model for predicting nitrogen oxides emissions, also having the most
stable validation loss.

Regarding the numerical values obtained during the training, validation and testing evaluation phases,
they are as follows:

Validation MAE Test MAE

GRU model for CO prediction 0.3715 0.4444
1D CNN model for CO prediction 0.1982 0.2052

GRU model for NOx prediction 0.3435 0.3838
1D CNN model for NOx prediction 0.2126 0.2126

Table 5.2: Validation and test loss with the different models

Test performance is usually expected to display a higher MAE compared to validation performance. This
occurs because the model hasn’t encountered the test data during training or parameter adjustment. The
validation set is employed for fine-tuning and preventing overfitting by adjusting parameters. The unseen
test set evaluates how well the model generalizes to new, unseen data. If test performance surpasses valida-
tion performance (test MAE is lower than validation MAE), it could indicate issues such as biased test data or
accidental model overfitting, affecting its ability to generalize to new data. Lower test performance, in com-
parison to validation, helps gauge the model’s capability to generalize to new data.

In this specific instance, it’s observed that this condition is met, except for the 1D CNN model used for
NOx prediction, where both test and validation MAE are identical. This indicates that all models across all
cases are functioning as expected.

Finally, upon plotting the resulting predictions obtained from each model (following the denormalization
of obtained data), the subsequent outcomes are obtained when juxtaposed with the initial target predictions:
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Figure 5.16: Target and predicted values after CO emissions prediction with GRU model

Figure 5.17: Target and predicted values after CO emissions prediction with 1D CNN model

Figure 5.18: Target and predicted values after NOx emissions prediction with GRU model
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Figure 5.19: Target and predicted values after NOx emissions prediction with 1D CNN model

It’s important to note that the shape of the resulting graphs is not the same as that of the original time
series. This is due to the data transformation set by the generator. For instance, through parameters like
lookback and delay, the generator impacts how the input dataset is structured for the model, simplifying re-
sult prediction, reducing computational cost, but sacrificing result interpretability.

The primary benefit of generators lies in their ability to process data on demand, generating data batches
instead of loading the entire dataset into memory simultaneously. This is particularly useful when working
with large datasets. Generators allow batch training, wherein the model is trained with data fragments at a
time, potentially enhancing training stability and speed. For instance, in real-world applications where data
is constantly changing or arriving sequentially (such as sensor data, stock data, etc.), generators enable pro-
cessing data as it arrives, contributing to the model’s adaptability to new data instances.

Nonetheless, the only relevant aspect remains the interpretability of the data and its representation. Based
on the metrics, target values and predictions, it’s confirmed that the models effectively adapt to predicting test
set data, signifying their capability to adjust to forecasting unseen, new data instances.

Consequently, it is possible to conclude that the primary objective of this Thesis, which was to predict
pollutant levels which were already known, is achieved.

When comparing the prediction of each of the target variables with each of the models employed, the
results are the following:

Figure 5.20: Target and predicted values comparison between GRU and 1D CNN models after CO emissions prediction
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Figure 5.21: Target and predicted values comparison between GRU and 1D CNN models after NOx emissions prediction

Based on the visualization of previous graphs and the analysis of MAE values, it becomes evident that the
GRU model excels in predicting NOx emissions instead of CO emissions, whereas the 1D CNN model per-
forms better in predicting CO emissions.

Furthermore, the 1D CNN model demonstrates lower validation and test MAE values compared to the
GRU model in both cases, indicating superior performance.

The graphs illustrate that the GRU model doesn’t adjust as effectively to abrupt changes in the targets,
showing less adaptability to significant increases or decreases in the target plot.

Consequently, the optimal model for this problem is determined to be the 1D CNN.





6
Conclusions

To finish this work, it is worth exposing the main conclusions that have been drawn from the studies carried
out.

The prediction of aircraft emissions holds critical significance in compliance with increasingly stringent
regulatory frameworks outlined in the initial chapters of this Thesis. Emissions, largely influenced by the
combustion process, are subject to stringent regulations driving exploration into avenues to reduce aviation
pollution.

Within this context, the implementation of emission prediction methods, specifically Continuous Emis-
sion Monitoring Systems (CEMS) and Predictive Emission Monitoring Systems (PEMS), presents viable mea-
sures. This Thesis primarily focuses on PEMS, which, despite their challenges, offer substantial advantages
over CEMS, forming the core framework for the methodologies employed.

A comprehensive mathematical background was provided, elucidating the methodologies and models
incorporated into an own Python-based code for practical implementation. This laid the foundation for an
in-depth Exploratory Data Analysis (EDA), revealing the complexity of real-world datasets, especially with the
inclusion of environmental, process variables and pollutant data collected over a five-year span from a gas
turbine.

The comprehensive analysis of the dataset derived from a gas turbine located in the northwestern region
of Turkey revealed intricate relationships between ambient variables and gas turbine process parameters.
Ambient temperature, pressure and humidity exhibited characteristics mirroring the typical climate patterns
of the region. Recurring values within specific features and the presence of outliers, especially within emis-
sions variables, indicated potential implications for data reliability, necessitating strategies for outlier treat-
ment.

Correlation analyses unveiled weak associations between ambient variables and gas turbine process pa-
rameters, while the latter had shown strong interrelationships. For example, lower turbine inlet temperatures
corresponded to increased carbon monoxide emissions, a consequence of incomplete combustion at lower
temperatures. Conversely, higher ambient temperatures correlated with reduced nitrogen oxides emissions,
offering an effective mean for their mitigation. Seasonal variations highlighted variable correlations during
distinct periods, emphasizing the dynamic nature of these relationships.

The dataset’s periodic trends, varying residuals across features and statistical significance in lag correla-
tions provided valuable insights into data characteristics. Understanding these complexities has been pivotal
for refining outlier treatment approaches and ensuring the accuracy and reliability of subsequent analyses in
gas turbine operation and emissions management.

The feature engineering process within this Thesis played a crucial role in constructing robust predictive
models, entailing the transformation and creation of significant variables from raw data. An in-depth explo-
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ration was conducted, employing domain knowledge, statistical methodologies and algorithmic techniques
to select, derive and refine features that substantially contributed to the predictive power of the models. Ad-
dressing issues such as outliers treatment and scaling variables was fundamental in enhancing the quality
and effectiveness of the models’ input features, thereby improving their overall performance and applicabil-
ity in real-world scenarios.

The initial steps involved the application of the interquartile range method fot outliers handling, resulting
in the modification of 19% of the dataset. The resultant cleaner representation of the data, assessed through
box plots and metric evaluations, displayed improved standard deviation values across most features. Recog-
nizing substantial dispersion within the features, a Butterworth filtering method was implemented to manage
the data’s dispersion. This step aimed to enhance predictive performance, as some models often struggle with
interpreting significant dispersion among feature values.

Canonical Correlation Analysis (CCA) was then used to determine the most influential variables for pre-
dicting carbon monoxide and nitrogen oxides emissions. Subsequently, feature selection focused on retain-
ing variables encompassing 95% of the cumulative importance. Scaling these chosen features became im-
perative due to variations in scale and dimensions, and a normalization process was applied by subtracting
the mean and dividing by the standard deviation of the training set.

In the feature selection process based on the 95% cumulative importance, the chosen variables for pre-
dicting carbon monoxide emissions were ambient temperature, ambient humidity, gas turbine exhaust pres-
sure, turbine inlet temperature, turbine energy yield and compressor discharge pressure. For predicting nitro-
gen oxides emissions, the selected variables encompassed ambient temperature, ambient humidity, turbine
inlet temperature, turbine energy yield and compressor discharge pressure.

The resulting dataset, composed of the most relevant variables and normalized for modeling purposes,
underwent prediction modeling for carbon monoxide and nitrogen oxides emissions. Employing GRU and
1D CNN models involved careful parameter selection and iterative adjustments to mitigate overfitting issues
and ensure computational efficiency. Evaluation of model performance against validation and test datasets
revealed notable results, highlighting the 1D CNN model’s superior performance in predicting both pollu-
tants due to its lower validation and test MAE values compared to the GRU model.

Results analysis highlighted that while the 1D CNN model outperformed GRU overall, intriguingly, GRU
excelled in predicting NOx emissions instead of CO emissions, whereas 1D CNN exhibited superior perfor-
mance for CO prediction. This finding diverges from conventional recommendations favoring GRU over 1D
CNN in sequences where temporal patterns are not invariant to shifts. For instance, in time series data where
recent observations hold more significance than distant historical data points.

Ultimately, the 1D CNN model emerged as the optimal choice for predicting pollutant emissions due to
its adaptability to forecast unseen data instances and its ability to effectively handle abrupt changes in the
target variables, surpassing the GRU model’s performance.

In summary, this Thesis navigates through a multifaceted exploration of aircraft emissions prediction,
showcasing the significance of methodologies, data transformations and model performances in predicting
emissions from gas turbines. The findings shed light on the intricacies of emissions prediction, indicating
promising directions for future research and practical applications in the aviation industry’s quest for pollu-
tion reduction.

All in all, it can be concluded that the objectives of this Thesis have been fulfilled.

6.1. Way forward
Looking at the results obtained in the different chapters, it is easy to identify some ways in which this project
could be improved and continued, which are the ones that follow:

• To enhance the mitigation of overfitting and achieve greater stability in the training and validation loss
graphs, the utilization of data augmentation could have been considered.
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Data augmentation involves creating new training data by applying various transformations or mod-
ifications to existing data. These alterations include rotations, flips, noise addition, etc., diversifying
the dataset without changing its fundamental characteristics. By providing the model with more varied
instances of the same data, data augmentation helps prevent overfitting. Augmentation mitigates this
by exposing the model to a wider range of data variations, improving its robustness and generalization
to unseen instances. Ultimately, data augmentation aids in enhancing the model’s performance and
mitigating overfitting by presenting diverse perspectives within the same dataset.

• As the carbon monoxide and nitrogen oxides emission issues are not decoupled, stemming from the
same gas turbine and significantly influenced by similar features, there was potential for a joint predic-
tion of both values rather than separating their predictions into two independent problems, through
multi-prediction models.

• As observed from the performance of the GRU model, which did not meet to perform as well as in-
tended, it might be beneficial to explore alternative models such as LSTM. This exploration could help
determine whether their performance is superior or not through comparative analysis.

• As in any machine or deep learning problem, computational constraints significantly influence solu-
tion implementation. One potential avenue for enhancing this project involves assessing a broader
range of hyperparameters or incorporating more complex networks into the models. However, it’s cru-
cial to note that more complex networks might exacerbate the issue of overfitting. Nevertheless, this
approach could potentially yield even more reliable results.

• To conduct further verification and conclusively demonstrate the model’s capability to predict future
emission data, it would be interesting to extend predictions beyond the years for which data is currently
available.
Extending a work beyond available data involves extrapolation, a theoretical process fundamental in
forecasting trends or patterns beyond the observed timeframe. This method relies on assuming that
the established patterns or relationships within the existing data will continue to hold true into the fu-
ture. It necessitates employing statistical models or mathematical algorithms that project the current
trajectory onto forthcoming periods. However, extrapolation comes with inherent risks, as it assumes
stability in underlying factors, potentially disregarding unforeseen shifts or disruptions. Utilizing ex-
trapolation requires a cautious approach, acknowledging its limitations and the need for continuous
validation to ensure the credibility of extended predictions.

All these options are interesting in themselves, but combined would result in a more complete project,
covering an even wider field.
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Appendix

I. Python code

1 # Library import
2 %matplotlib inline
3 import numpy as np
4 import pandas as pd
5 import seaborn as sns
6 import matplotlib.pyplot as plt
7 import datetime
8 from datetime import timedelta
9 from scipy.interpolate import interp1d

10 from scipy import signal
11 from statsmodels.nonparametric.smoothers_lowess import lowess
12 from statsmodels.tsa.seasonal import seasonal_decompose
13 import statistics
14 from statsmodels.tsa.stattools import adfuller , kpss
15 from pandas.plotting import autocorrelation_plot
16 from statsmodels.graphics.tsaplots import plot_acf , plot_pacf
17 from sklearn.preprocessing import StandardScaler
18 from tensorflow.keras.models import Sequential
19 from tensorflow.keras.layers import GRU , Dense
20 from sklearn.metrics import mean_squared_error , mean_absolute_error
21 from scipy.signal import butter , filtfilt
22 from sklearn.cross_decomposition import CCA
23 from keras import layers
24 from keras.regularizers import l2
25 from keras.optimizers import Adam
26 from keras.callbacks import EarlyStopping
27 from keras.utils import plot_model
28 sns.set_theme ()
29

30 # Suppress warnings
31 import warnings
32 warnings.filterwarnings(’ignore ’)

1 # Read csvs
2 gt_2011 = pd.read_csv("gt_2011.csv")
3 gt_2012 = pd.read_csv("gt_2012.csv")
4 gt_2013 = pd.read_csv("gt_2013.csv")
5 gt_2014 = pd.read_csv("gt_2014.csv")
6 gt_2015 = pd.read_csv("gt_2015.csv")
7

8 # Join all of the data in a single Dataframe
9 gt = pd.concat ([gt_2011 ,gt_2012 ,gt_2013 ,gt_2014 ,gt_2015], ignore_index=True)

10

11 # Erase limitations on vectors and columns visualization
12 pd.options.display.max_columns = None
13 np.set_printoptions(linewidth =1000)

1 # See what attributes we have in the different datasets
2 gt_2011.head()

1 gt_2012.head()

1 gt_2013.head()

1 gt_2014.head()

1 gt_2015.head()
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1 gt.head()

1 # Information of the different attributes we have in the different Datasets
2 gt_2011.info()
3 gt_2012.info()
4 gt_2013.info()
5 gt_2014.info()
6 gt_2015.info()
7 gt.info()

1 # Check for null values
2 np.round(gt.isnull ().mean() * 100,1)

1 # First , the index will be converted to datetime in hourly intervals
2 def add_date(df, date_a , date_b):
3 delta = timedelta(minutes =60)
4 timestamps = [date_a]
5 date_x = date_a
6 while date_x < date_b:
7 date_x += timedelta(minutes =60)
8 timestamps.append(date_x)
9 Date = [d.strftime(’%Y-%m-%d %H:%M:%S’) for d in timestamps]

10 df[’datetime ’] = Date
11 df[’datetime ’] = pd.to_datetime(df[’datetime ’])
12

13 add_date(gt_2011 , datetime.datetime (2011, 1, 1, 0),
14 datetime.datetime (2011 , 11, 5, 18))
15 add_date(gt_2012 , datetime.datetime (2012, 1, 1, 0),
16 datetime.datetime (2012 , 11, 13, 19))
17 add_date(gt_2013 , datetime.datetime (2013, 1, 1, 0),
18 datetime.datetime (2013 , 10, 25, 23))
19 add_date(gt_2014 , datetime.datetime (2014, 1, 1, 0),
20 datetime.datetime (2014 , 10, 26, 5))
21 add_date(gt_2015 , datetime.datetime (2015, 1, 1, 0),
22 datetime.datetime (2015 , 11, 4, 15))
23

24 gt_2011_ts = gt_2011.set_index(’datetime ’)
25 gt_2012_ts = gt_2012.set_index(’datetime ’)
26 gt_2013_ts = gt_2013.set_index(’datetime ’)
27 gt_2014_ts = gt_2014.set_index(’datetime ’)
28 gt_2015_ts = gt_2015.set_index(’datetime ’)
29

30 gt_ts = pd.concat ([gt_2011_ts ,gt_2012_ts ,gt_2013_ts ,gt_2014_ts ,gt_2015_ts ])

1 # Filling missing values - Cell used for testing different methods
2 end_time = datetime.datetime (2015 , 12, 31, 23).strftime(’%Y-%m-%d %H:%M:%S’)
3

4 all_times = pd.date_range(start=gt_ts.index.min(), end=end_time , freq=’H’)
5 df = gt_ts.reindex(all_times)
6

7 def model_test(df , value):
8 train = df[’2011 -01 -01’:’2012 -12 -31’]
9 X_train = train.index

10 y_train = train[value]
11 val = df[’2013 -01 -01’:’2013 -12 -31’]
12 X_val = val.index
13 y_val = val[value]
14 test = df[’2014 -01 -01’:’2015 -12 -31’]
15 X_test = test.index
16 y_test = test[value]
17 X_train = X_train.astype(int) // 10**9
18 X_val = X_val.astype(int) // 10**9
19 X_test = X_test.astype(int) // 10**9
20 X_train = np.array(X_train)
21 X_val = np.array(X_val)
22 X_test = np.array(X_test)
23 X_train = X_train.reshape(-1, 1, 1)
24 X_val = X_val.reshape(-1, 1, 1)
25 X_test = X_test.reshape(-1, 1, 1)
26 model = Sequential ()
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27 model.add(GRU(64, activation=’tanh’, input_shape =(None , 1)))
28 model.add(Dense(1, activation=’linear ’))
29 model.compile(optimizer=’adam’, loss=’mean_squared_error ’,
30 metrics =[’mean_absolute_error ’])
31 model.fit(X_train , y_train , epochs =20, batch_size =32,
32 validation_data =(X_val , y_val))
33 loss , mean_absolute_error = model.evaluate(X_test , y_test)
34

35 print(f’Loss in test data: {loss}’)
36 print(f’MAE in test data: {mean_absolute_error}’)
37

38

39 def fill_test(df, value , xlabel , ylabel):
40 ## 1. Forward Fill
41 plt.figure(figsize =(16 ,5))
42 df[’ffill’] = df[value ].ffill()
43 df[’ffill’].plot(color=’y’)
44 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
45 plt.title(’Forward Fill’)
46 plt.show()
47

48 ## 2. Linear Interpolation
49 plt.figure(figsize =(16 ,5))
50 df[’rownum ’] = np.arange(df.shape [0])
51 df_nona = df.dropna(subset = [value])
52 f = interp1d(df_nona[’rownum ’], df_nona[value],
53 bounds_error=False , fill_value =3)
54 df[’linear_fill ’] = f(df[’rownum ’])
55 df[’linear_fill ’].plot(color=’c’)
56 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
57 plt.title(’Linear Interpolation ’)
58 plt.show()
59

60 ## 3. Seasonal Mean
61 def seasonal_mean(ts , n):
62 out = np.copy(ts)
63 for i, val in enumerate(ts):
64 if np.isnan(val):
65 ts_seas = ts[i-1::-n] # previous seasons only
66 if np.isnan(np.nanmean(ts_seas)):
67 ts_seas = np.concatenate ([ts[i-1::-n], ts[i::n]]) # prev and forw
68 out[i] = np.nanmean(ts_seas)
69 return out
70

71 plt.figure(figsize =(16 ,5))
72 df[’seasonal_mean ’] = seasonal_mean(df[value], n=2920) # 2920 4 months
73 df[’seasonal_mean ’].plot(color=’m’)
74 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
75 plt.title(’Seasonal Mean’)
76 plt.show()
77

78 ## 4. Mean of ’n’ Nearest Past Neighbors (KNN)
79 def knn_mean(ts, n):
80 out = np.copy(ts)
81 for i, val in enumerate(ts):
82 if np.isnan(val):
83 n_by_2 = np.ceil(n/2)
84 lower = np.max([0, int(i-n_by_2)])
85 upper = np.min([len(ts)+1, int(i+n_by_2)])
86 ts_near = np.concatenate ([ts[lower:i], ts[i:upper ]])
87 out[i] = np.nanmean(ts_near)
88 return out
89

90 plt.figure(figsize =(16 ,5))
91 df[’knn_mean ’] = knn_mean(df[value ].values , 2920) # 2920 4 months
92 df[’knn_mean ’].plot(color=’r’)
93 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
94 plt.title(’KNN’)
95 plt.show()
96

97 return df
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98

99 def method_test(df, value , xlabel , ylabel):
100 fill_test(df, value , xlabel , ylabel)
101 model_test(df , value=’ffill’)
102 model_test(df , value=’linear_fill ’)
103 model_test(df , value=’seasonal_mean ’)
104 model_test(df , value=’knn_mean ’)
105

106 method_test(df, value=’AT’, xlabel=’Years’,
107 ylabel=’Ambient Temperature [ C ]’)
108 method_test(df, value=’AP’, xlabel=’Years’,
109 ylabel=’Ambient Pressure [mbar]’)
110 method_test(df, value=’AH’, xlabel=’Years’,
111 ylabel=’Ambient Humidity [%]’)
112 method_test(df, value=’AFDP’, xlabel=’Years’,
113 ylabel=’Air Filter Difference Pressure [mbar]’)
114 method_test(df, value=’GTEP’, xlabel=’Years’,
115 ylabel=’Gas Turbine Exhaust Pressure [mbar]’)
116 method_test(df, value=’TIT’, xlabel=’Years’,
117 ylabel=’Turbine Inlet Temperature [ C ]’)
118 method_test(df, value=’TAT’, xlabel=’Years’,
119 ylabel=’Turbine After Temperature [ C ]’)
120 method_test(df, value=’TEY’, xlabel=’Years’,
121 ylabel=’Turbine Energy Yield [MWH]’)
122 method_test(df, value=’CDP’, xlabel=’Years’,
123 ylabel=’Compressor Discharge Pressure [mbar]’)
124 method_test(df, value=’CO’, xlabel=’Years’,
125 ylabel=’Carbon Monoxide [$mg/m^3$]’)
126 method_test(df, value=’NOX’, xlabel=’Years’,
127 ylabel=’Nitrogen Oxides [$mg/m^3$]’)

1 # Plot year intervals (full time series) filling missing values -
2 # Seasonal Mean + Smoothed temporal series - LOWESS 2%
3 end_time = datetime.datetime (2015 , 12, 31, 23).strftime(’%Y-%m-%d %H:%M:%S’)
4 all_times = pd.date_range(start=gt_ts.index.min(), end=end_time , freq=’H’)
5 gt_ts = gt_ts.reindex(all_times)
6

7 def seasonal(df, value):
8 def seasonal_mean(ts , n):
9 out = np.copy(ts)

10 for i, val in enumerate(ts):
11 if np.isnan(val):
12 ts_seas = ts[i-1::-n] # previous seasons only
13 if np.isnan(np.nanmean(ts_seas)):
14 ts_seas = np.concatenate ([ts[i-1::-n], ts[i::n]]) # prev & forw
15 out[i] = np.nanmean(ts_seas)
16 return out
17

18 df[value] = seasonal_mean(df[value ].values , 2920) # 2920 4 months
19 return df
20

21 def seasonal_AT(df, value):
22 def seasonal_mean_AT(ts, n):
23 out = np.copy(ts)
24 for i, val in enumerate(ts):
25 if np.isnan(val):
26 ts_seas = ts[i-1::-n] # previous seasons only
27 if np.isnan(np.nanmean(ts_seas)):
28 ts_seas = np.concatenate ([ts[i-1::-n], ts[i::n]]) # prev & forw
29 out[i] = np.nanmean(ts_seas) / 2
30 return out
31

32 df[value] = seasonal_mean_AT(df[value].values , 2920) # 2920 4 months
33 return df
34

35 def lowess_plot(df, value , xlabel , ylabel , legend1 , legend2):
36 df_lowess = pd.DataFrame(lowess(df[value], np.arange(len(df[value ])),
37 frac =0.02)[:, 1], index=df.index ,
38 columns =[value])
39 plt.figure(figsize =(16 ,5))
40 plt.plot(df.index , df[value], color=’m’)
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41 plt.plot(df.index , df_lowess , color=’r’, linewidth =2)
42 mean = np.mean(df[value ])
43 std_dev = statistics.stdev(df[value ])
44 ymax = mean + (std_dev /2)
45 ymin = mean - (std_dev /2)
46 plt.axhline(y=mean , color=’k’, linestyle=’--’, linewidth =2)
47 plt.axhline(y=ymax , color=’g’, linestyle=’--’, linewidth =2)
48 plt.axhline(y=ymin , color=’g’, linestyle=’--’, linewidth =2)
49 plt.legend ([legend1 , legend2 , ’Mean’, ’Std Deviation ’])
50 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
51 plt.show()
52

53 def lowess_AFDP(df, value , xlabel , ylabel , legend1 , legend2):
54 df_lowess = pd.DataFrame(lowess(df[value], np.arange(len(df[value ])),
55 frac =0.02)[:, 1], index=df.index ,
56 columns =[ value])
57 plt.figure(figsize =(16 ,5))
58 plt.plot(df.index , df[value], color=’m’)
59 plt.plot(df.index , df_lowess , color=’r’, linewidth =2)
60 mean = np.mean(df[value ])
61 std_dev = statistics.stdev(df[value ])
62 ymax = mean + (std_dev /2)
63 ymin = mean - (std_dev /2)
64 plt.axhline(y=mean , color=’k’, linestyle=’--’, linewidth =2)
65 plt.axhline(y=ymax , color=’g’, linestyle=’--’, linewidth =2)
66 plt.axhline(y=ymin , color=’g’, linestyle=’--’, linewidth =2)
67 plt.axvspan(gt_ts.index [1650] , gt_ts.index [1950] , facecolor=’y’,
68 edgecolor=’none’, alpha =.3)
69 plt.axvspan(gt_ts.index [10375] , gt_ts.index [10675] , facecolor=’y’,
70 edgecolor=’none’, alpha =.3)
71 plt.axvspan(gt_ts.index [15000] , gt_ts.index [15300] , facecolor=’y’,
72 edgecolor=’none’, alpha =.3)
73 plt.axvspan(gt_ts.index [16000] , gt_ts.index [16300] , facecolor=’y’,
74 edgecolor=’none’, alpha =.3)
75 plt.axvspan(gt_ts.index [26850] , gt_ts.index [27150] , facecolor=’y’,
76 edgecolor=’none’, alpha =.3)
77 plt.legend ([legend1 , legend2 , ’Mean’, ’Std Deviation ’])
78 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
79 plt.show()
80

81 def lowess_TIT(df , value , xlabel , ylabel , legend1 , legend2):
82 df_lowess = pd.DataFrame(lowess(df[value], np.arange(len(df[value ])),
83 frac =0.02)[:, 1], index=df.index ,
84 columns =[ value])
85 plt.figure(figsize =(16 ,5))
86 plt.plot(df.index , df[value], color=’m’)
87 plt.plot(df.index , df_lowess , color=’r’, linewidth =2)
88 mean = np.mean(df[value ])
89 std_dev = statistics.stdev(df[value ])
90 ymax = mean + (std_dev /2)
91 ymin = mean - (std_dev /2)
92 plt.axhline(y=mean , color=’k’, linestyle=’--’, linewidth =2)
93 plt.axhline(y=ymax , color=’g’, linestyle=’--’, linewidth =2)
94 plt.axhline(y=ymin , color=’g’, linestyle=’--’, linewidth =2)
95 plt.axvspan(gt_ts.index [6150] , gt_ts.index [6650] , facecolor=’y’,
96 edgecolor=’none’, alpha =.3)
97 plt.axvspan(gt_ts.index [27400] , gt_ts.index [27750] , facecolor=’y’,
98 edgecolor=’none’, alpha =.3)
99 plt.axvspan(gt_ts.index [32100] , gt_ts.index [32750] , facecolor=’y’,

100 edgecolor=’none’, alpha =.3)
101 plt.legend ([legend1 , legend2 , ’Mean’, ’Std Deviation ’])
102 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
103 plt.show()
104

105 def lowess_TAT(df , value , xlabel , ylabel , legend1 , legend2):
106 df_lowess = pd.DataFrame(lowess(df[value], np.arange(len(df[value ])),
107 frac =0.02)[:, 1], index=df.index ,
108 columns =[ value])
109 plt.figure(figsize =(16 ,5))
110 plt.plot(df.index , df[value], color=’m’)
111 plt.plot(df.index , df_lowess , color=’r’, linewidth =2)
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112 mean = np.mean(df[value ])
113 std_dev = statistics.stdev(df[value ])
114 ymax = mean + (std_dev /2)
115 ymin = mean - (std_dev /2)
116 plt.axhline(y=mean , color=’k’, linestyle=’--’, linewidth =2)
117 plt.axhline(y=ymax , color=’g’, linestyle=’--’, linewidth =2)
118 plt.axhline(y=ymin , color=’g’, linestyle=’--’, linewidth =2)
119 plt.axvspan(gt_ts.index [6300] , gt_ts.index [6650] , facecolor=’y’,
120 edgecolor=’none’, alpha =.3)
121 plt.axvspan(gt_ts.index [9000] , gt_ts.index [9750] , facecolor=’y’,
122 edgecolor=’none’, alpha =.3)
123 plt.axvspan(gt_ts.index [32450] , gt_ts.index [32700] , facecolor=’y’,
124 edgecolor=’none’, alpha =.3)
125 plt.axvspan(gt_ts.index [35000] , gt_ts.index [35400] , facecolor=’y’,
126 edgecolor=’none’, alpha =.3)
127 plt.legend ([legend1 , legend2 , ’Mean’, ’Std Deviation ’])
128 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
129 plt.show()
130

131 def lowess_CO(df , value , xlabel , ylabel , legend1 , legend2):
132 df_lowess = pd.DataFrame(lowess(df[value], np.arange(len(df[value ])),
133 frac =0.02)[:, 1], index=df.index ,
134 columns =[value])
135 plt.figure(figsize =(16 ,5))
136 plt.plot(df.index , df[value], color=’m’)
137 plt.plot(df.index , df_lowess , color=’r’, linewidth =2)
138 mean = np.mean(df[value ])
139 std_dev = statistics.stdev(df[value ])
140 ymax = mean + (std_dev /2)
141 ymin = mean - (std_dev /2)
142 plt.axhline(y=mean , color=’k’, linestyle=’--’, linewidth =2)
143 plt.axhline(y=ymax , color=’g’, linestyle=’--’, linewidth =2)
144 plt.axhline(y=ymin , color=’g’, linestyle=’--’, linewidth =2)
145 plt.axvspan(gt_ts.index [2150] , gt_ts.index [3200] , facecolor=’y’,
146 edgecolor=’none’, alpha =.3)
147 plt.axvspan(gt_ts.index [5650] , gt_ts.index [7100] , facecolor=’y’,
148 edgecolor=’none’, alpha =.3)
149 plt.axvspan(gt_ts.index [8600] , gt_ts.index [9300] , facecolor=’y’,
150 edgecolor=’none’, alpha =.3)
151 plt.axvspan(gt_ts.index [10650] , gt_ts.index [11950] , facecolor=’y’,
152 edgecolor=’none’, alpha =.3)
153 plt.axvspan(gt_ts.index [14150] , gt_ts.index [15800] , facecolor=’y’,
154 edgecolor=’none’, alpha =.3)
155 plt.axvspan(gt_ts.index [19050] , gt_ts.index [19400] , facecolor=’y’,
156 edgecolor=’none’, alpha =.3)
157 plt.axvspan(gt_ts.index [22150] , gt_ts.index [22500] , facecolor=’y’,
158 edgecolor=’none’, alpha =.3)
159 plt.axvspan(gt_ts.index [27200] , gt_ts.index [27750] , facecolor=’y’,
160 edgecolor=’none’, alpha =.3)
161 plt.axvspan(gt_ts.index [31900] , gt_ts.index [33300] , facecolor=’y’,
162 edgecolor=’none’, alpha =.3)
163 plt.axvspan(gt_ts.index [35500] , gt_ts.index [36800] , facecolor=’y’,
164 edgecolor=’none’, alpha =.3)
165 plt.axvspan(gt_ts.index [38900] , gt_ts.index [39950] , facecolor=’y’,
166 edgecolor=’none’, alpha =.3)
167 plt.legend ([legend1 , legend2 , ’Mean’, ’Std Deviation ’])
168 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
169 plt.show()
170

171 def lowess_NOx(df , value , xlabel , ylabel , legend1 , legend2):
172 df_lowess = pd.DataFrame(lowess(df[value], np.arange(len(df[value ])),
173 frac =0.02)[:, 1], index=df.index ,
174 columns =[value])
175 plt.figure(figsize =(16 ,5))
176 plt.plot(df.index , df[value], color=’m’)
177 plt.plot(df.index , df_lowess , color=’r’, linewidth =2)
178 mean = np.mean(df[value ])
179 std_dev = statistics.stdev(df[value ])
180 ymax = mean + (std_dev /2)
181 ymin = mean - (std_dev /2)
182 plt.axhline(y=mean , color=’k’, linestyle=’--’, linewidth =2)
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183 plt.axhline(y=ymax , color=’g’, linestyle=’--’, linewidth =2)
184 plt.axhline(y=ymin , color=’g’, linestyle=’--’, linewidth =2)
185 plt.axvspan(gt_ts.index [5600] , gt_ts.index [6000] , facecolor=’y’,
186 edgecolor=’none’, alpha =.3)
187 plt.axvspan(gt_ts.index [30150] , gt_ts.index [30450] , facecolor=’y’,
188 edgecolor=’none’, alpha =.3)
189 plt.axvspan(gt_ts.index [32850] , gt_ts.index [33500] , facecolor=’y’,
190 edgecolor=’none’, alpha =.3)
191 plt.axvspan(gt_ts.index [38500] , gt_ts.index [38850] , facecolor=’y’,
192 edgecolor=’none’, alpha =.3)
193 plt.legend ([legend1 , legend2 , ’Mean’, ’Std Deviation ’])
194 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
195 plt.show()
196

197 # Plot and highlight max or min values
198 seasonal_AT(gt_ts , value=’AT’)
199 lowess_plot(gt_ts , ’AT’, xlabel=’Years’, ylabel=’Ambient Temperature [ C ]’,
200 legend1=’AT’, legend2=’AT smoothed ’)
201

202 seasonal(gt_ts , value=’AP’)
203 lowess_plot(gt_ts , ’AP’, xlabel=’Years’, ylabel=’Ambient Pressure [mbar]’,
204 legend1=’AP’, legend2=’AP smoothed ’)
205

206 seasonal(gt_ts , value=’AH’)
207 lowess_plot(gt_ts , ’AH’, xlabel=’Years’, ylabel=’Ambient Humidity [%]’,
208 legend1=’AH’, legend2=’AH smoothed ’)
209

210 seasonal(gt_ts , value=’AFDP’)
211 lowess_AFDP(gt_ts , ’AFDP’, xlabel=’Years ’,
212 ylabel=’Air Filter Difference Pressure [mbar]’,
213 legend1=’AFDP’, legend2=’AFDP smoothed ’)
214

215 seasonal(gt_ts , value=’GTEP’)
216 lowess_plot(gt_ts , ’GTEP’, xlabel=’Years ’,
217 ylabel=’Gas Turbine Exhaust Pressure [mbar]’,
218 legend1=’GTEP’, legend2=’GTEP smoothed ’)
219

220 seasonal(gt_ts , value=’TIT’)
221 lowess_TIT(gt_ts , ’TIT’, xlabel=’Years’,
222 ylabel=’Turbine Inlet Temperature [ C ]’,
223 legend1=’TIT’, legend2=’TIT smoothed ’)
224

225 seasonal(gt_ts , value=’TAT’)
226 lowess_TAT(gt_ts , ’TAT’, xlabel=’Years’,
227 ylabel=’Turbine After Temperature [ C ]’,
228 legend1=’TAT’, legend2=’TAT smoothed ’)
229

230 seasonal(gt_ts , value=’TEY’)
231 lowess_plot(gt_ts , ’TEY’, xlabel=’Years’, ylabel=’Turbine Energy Yield [MWH]’,
232 legend1=’TEY’, legend2=’TEY smoothed ’)
233

234 seasonal(gt_ts , value=’CDP’)
235 lowess_plot(gt_ts , ’CDP’, xlabel=’Years’,
236 ylabel=’Compressor Discharge Pressure [mbar]’,
237 legend1=’CDP’, legend2=’CDP smoothed ’)
238

239 seasonal(gt_ts , value=’CO’)
240 lowess_CO(gt_ts , ’CO’, xlabel=’Years’, ylabel=’Carbon Monoxide [$mg/m^3$]’,
241 legend1=’CO’, legend2=’CO smoothed ’)
242

243 seasonal(gt_ts , value=’NOX’)
244 lowess_NOx(gt_ts , ’NOX’, xlabel=’Years’, ylabel=’Nitrogen Oxides [$mg/m^3$]’,
245 legend1=’NOx’, legend2=’NOx smoothed ’)

1 # Data visualization - Histograms and tendency
2 fig , axes = plt.subplots (4,3, figsize =(20 ,17))
3

4 sns.histplot(data=gt_ts , x="AT", kde=True ,ax=axes [0,0])
5 axes [0 ,0]. set_xlabel("Ambient Temperature [ C ]")
6 axes [0 ,0]. set_ylabel("Count")
7
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8 sns.histplot(data=gt_ts , x="AP", kde=True ,ax=axes [0,1])
9 axes [0 ,1]. set_xlabel("Ambient Pressure [mbar]")

10 axes [0 ,1]. set_ylabel("Count")
11

12 sns.histplot(data=gt_ts , x="AH", kde=True ,ax=axes [0,2])
13 axes [0 ,2]. set_xlabel("Ambient Humidity [%]")
14 axes [0 ,2]. set_ylabel("Count")
15

16 sns.histplot(data=gt_ts , x="AFDP", kde=True ,ax=axes [1,0])
17 axes [1 ,0]. set_xlabel("Air Filter Difference Pressure [mbar]")
18 axes [1 ,0]. set_ylabel("Count")
19

20 sns.histplot(data=gt_ts , x="GTEP", kde=True ,ax=axes [1,1])
21 axes [1 ,1]. set_xlabel("Gas Turbine Exhaust Pressure [mbar]")
22 axes [1 ,1]. set_ylabel("Count")
23

24 sns.histplot(data=gt_ts , x="TIT", kde=True ,ax=axes [1 ,2])
25 axes [1 ,2]. set_xlabel("Turbine Inlet Temperature [ C ]")
26 axes [1 ,2]. set_ylabel("Count")
27

28 sns.histplot(data=gt_ts , x="TAT", kde=True ,ax=axes [2 ,0])
29 axes [2 ,0]. set_xlabel("Turbine After Temperature [ C ]")
30 axes [2 ,0]. set_ylabel("Count")
31

32 sns.histplot(data=gt_ts , x="TEY", kde=True ,ax=axes [2 ,1])
33 axes [2 ,1]. set_xlabel("Turbine Energy Yield [MW]")
34 axes [2 ,1]. set_ylabel("Count")
35

36 sns.histplot(data=gt_ts , x="CDP", kde=True ,ax=axes [2 ,2])
37 axes [2 ,2]. set_xlabel("Compressor Discharge Pressure [mbar]")
38 axes [2 ,2]. set_ylabel("Count")
39

40 sns.histplot(data=gt_ts , x="CO", kde=True ,ax=axes [3,0])
41 axes [3 ,0]. set_xlabel("Carbon Monoxide [$mg/m^3$]")
42 axes [3 ,0]. set_ylabel("Count")
43

44 sns.histplot(data=gt_ts , x="NOX", kde=True ,ax=axes [3 ,1])
45 axes [3 ,1]. set_xlabel("Nitrogen Oxides [$mg/m^3$]")
46 axes [3 ,1]. set_ylabel("Count")

1 # Correlation matrix - Pearson
2 corr_df = gt_ts.corr(method=’pearson ’)
3

4 plt.figure(figsize =(10 ,6))
5 sns.heatmap(corr_df , annot=True)
6 plt.show()

1 # Correlation matrix - Kendall
2 corr_df = gt_ts.corr(method=’kendall ’)
3

4 plt.figure(figsize =(10 ,6))
5 sns.heatmap(corr_df , annot=True)
6 plt.show()

1 # Correlation matrix during Winter - Pearson
2 corr_wint = gt_ts.loc[’2011 -01 -01’].corr(method=’pearson ’)
3

4 plt.figure(figsize =(10 ,6))
5 sns.heatmap(corr_wint , annot=True)
6 plt.show()

1 # Correlation matrix during Summer - Pearson
2 corr_summ = gt_ts.loc[’2011 -08 -01’].corr(method=’pearson ’)
3

4 plt.figure(figsize =(10 ,6))
5 sns.heatmap(corr_summ , annot=True)
6 plt.show()

1 # Data visualization - Pairplot
2 sns.pairplot(gt_ts , corner=True , kind=’hist’);
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1 # Data visualization - Lmplot for CO
2 ax = sns.lmplot(
3 x=’value ’,
4 y=’CO’,
5 data=gt.melt(id_vars=’CO’, value_vars=gt_ts),
6 col=’variable ’,
7 col_wrap=3,
8 sharex=False ,
9 sharey=False ,

10 line_kws ={’color’: ’red’},
11 scatter_kws ={’s’: 5})
12 ax.tight_layout ()

1 # Data visualization - Lmplot for NOx
2 ax = sns.lmplot(
3 x=’value ’,
4 y=’NOX’,
5 data=gt.melt(id_vars=’NOX’, value_vars=gt_ts),
6 col=’variable ’,
7 col_wrap=3,
8 sharex=False ,
9 sharey=False ,

10 line_kws ={’color’: ’red’},
11 scatter_kws ={’s’: 5})
12 ax.tight_layout ();

1 # Seasonal plot - Savitzky -Golay filter
2 def seas_plot(df, value):
3 y = signal.savgol_filter(df[value], window_length =100, polyorder =1)
4 plt.plot(df.index , y)
5 return
6

7 def joint_plot_s(value , xlabel , ylabel):
8 plt.figure(figsize =(16 ,5))
9 seas_plot(gt_2011_ts , value)

10 seas_plot(gt_2012_ts , value)
11 seas_plot(gt_2013_ts , value)
12 seas_plot(gt_2014_ts , value)
13 seas_plot(gt_2015_ts , value)
14 mean = np.mean(gt_ts[value ])
15 std_dev = statistics.stdev(gt_ts[value ])
16 ymax = mean + (std_dev /2)
17 ymin = mean - (std_dev /2)
18 plt.axhline(y=mean , color=’k’, linestyle=’--’, linewidth =2)
19 plt.axhline(y=ymax , color=’red’, linestyle=’--’, linewidth =2)
20 plt.axhline(y=ymin , color=’red’, linestyle=’--’, linewidth =2)
21 plt.legend ([’2011’, ’2012’, ’2013’, ’2014’, ’2015’, ’Mean’, ’Std Deviation ’])
22 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
23 plt.show()
24

25 joint_plot_s(’AT’, xlabel=’Year’,
26 ylabel=’Ambient Temperature [ C ]’)
27 joint_plot_s(’AP’, xlabel=’Year’,
28 ylabel=’Ambient Pressure [mbar]’)
29 joint_plot_s(’AH’, xlabel=’Year’,
30 ylabel=’Ambient Humidity [%]’)
31 joint_plot_s(’AFDP’, xlabel=’Year’,
32 ylabel=’Air Filter Difference Pressure [mbar]’)
33 joint_plot_s(’GTEP’, xlabel=’Year’,
34 ylabel=’Gas Turbine Exhaust Pressure [mbar]’)
35 joint_plot_s(’TIT’, xlabel=’Year’,
36 ylabel=’Turbine Inlet Temperature [ C ]’)
37 joint_plot_s(’TAT’, xlabel=’Year’,
38 ylabel=’Turbine After Temperature [ C ]’)
39 joint_plot_s(’TEY’, xlabel=’Year’,
40 ylabel=’Turbine Energy Yield [MWH]’)
41 joint_plot_s(’CDP’, xlabel=’Year’,
42 ylabel=’Compressor Discharge Pressure [mbar]’)
43 joint_plot_s(’CO’, xlabel=’Year’,
44 ylabel=’Carbon Monoxide [$mg/m^3$]’)
45 joint_plot_s(’NOX’, xlabel=’Year’,
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46 ylabel=’Nitrogen Oxides [$mg/m^3$]’)

1 # Joint time series with normalization and comparison -
2 # They start at the same point
3 scaler = StandardScaler ()
4 df_normalized = scaler.fit_transform(gt_ts)
5 df_norm = pd.DataFrame(df_normalized , index=gt_ts.index ,
6 columns =[’AT’, ’AP’, ’AH’, ’AFDP’, ’GTEP’, ’TIT’, ’TAT’,
7 ’TEY’, ’CDP’, ’CO’, ’NOX’])
8

9 loess_GTEP = pd.DataFrame(lowess(df_norm[’GTEP’],
10 np.arange(len(df_norm[’GTEP’])),
11 frac =0.02)[:, 1], index=df_norm.index ,
12 columns =[’GTEP’])
13 loess_AFDP = pd.DataFrame(lowess(df_norm[’AFDP’],
14 np.arange(len(df_norm[’AFDP’])),
15 frac =0.02)[:, 1], index=df_norm.index ,
16 columns =[’AFDP’])
17 loess_TEY = pd.DataFrame(lowess(df_norm[’TEY’],
18 np.arange(len(df_norm[’TEY’])),
19 frac =0.02)[:, 1], index=df_norm.index ,
20 columns =[’TEY’])
21 loess_CDP = pd.DataFrame(lowess(df_norm[’CDP’],
22 np.arange(len(df_norm[’CDP’])),
23 frac =0.02)[:, 1], index=df_norm.index ,
24 columns =[’CDP’])
25 loess_AH = pd.DataFrame(lowess(df_norm[’AH’],
26 np.arange(len(df_norm[’AH’])),
27 frac =0.02)[:, 1], index=df_norm.index ,
28 columns =[’AH’])
29 loess_TIT = pd.DataFrame(lowess(df_norm[’TIT’],
30 np.arange(len(df_norm[’TIT’])),
31 frac =0.02)[:, 1], index=df_norm.index ,
32 columns =[’TIT’])
33 loess_TAT = pd.DataFrame(lowess(df_norm[’TAT’],
34 np.arange(len(df_norm[’TAT’])),
35 frac =0.02)[:, 1], index=df_norm.index ,
36 columns =[’TAT’])
37

38 plt.figure(figsize =(16 ,7))
39 plt.plot(df_norm.index , loess_GTEP , color=’r’, label=’GTEP’)
40 plt.plot(df_norm.index , loess_AFDP , color=’g’, label=’AFDP’)
41 plt.plot(df_norm.index , loess_TEY , color=’b’, label=’TEY’)
42 plt.plot(df_norm.index , loess_CDP , color=’y’, label=’CDP’)
43 plt.plot(df_norm.index , loess_AH , color=’m’, label=’AH’)
44 plt.plot(df_norm.index , loess_TIT , color=’k’, label=’TIT’)
45 plt.plot(df_norm.index , -loess_TAT , color=’orange ’, label=’TAT’)
46 plt.gca().set(xlabel=’Years’)
47 plt.legend ()
48 plt.show()

1 # Additive Decomposition
2 end_time = datetime.datetime (2015 , 12, 31, 23).strftime(’%Y-%m-%d %H:%M:%S’)
3

4 def plot_comp(df , value , results , xlabel , ylabel):
5 series = df[value]
6 trend_estimate = results.trend
7 periodic_estimate = results.seasonal
8 residual = results.resid
9

10 plt.figure(figsize =(15 ,5))
11 plt.plot(series , label=’Original time series ’, color=’blue’)
12 plt.plot(trend_estimate , label=’Trend of time series ’, color=’red’)
13 plt.legend(fontsize =10)
14 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
15 plt.show()
16

17 plt.figure(figsize =(15 ,5))
18 plt.plot(periodic_estimate , color=’green’)
19 plt.gca().set(xlabel=xlabel , ylabel=’Seasonality ’)
20 plt.show()
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21

22 plt.figure(figsize =(15 ,5))
23 plt.plot(residual , color=’orange ’)
24 plt.gca().set(xlabel=xlabel , ylabel=’Decomposition residuals ’)
25 plt.show()
26

27 # Actual Values = Sum of (Seasonal + Trend + Resid)
28 df_reconstructed = pd.concat ([ results.seasonal , results.trend , results.resid ,
29 results.observed], axis =1)
30 df_reconstructed.columns = [’seas’, ’trend ’, ’resid’, ’actual_values ’]
31 print(df_reconstructed.head())
32

33 def add_decom_plot(df , value , ylabel , end_time=end_time):
34 results = seasonal_decompose(df[value], model=’additive ’,
35 extrapolate_trend=’freq’, period =8764) # 1 year
36 plot_comp(df, value , results , xlabel=’Years’, ylabel=ylabel)
37

38 add_decom_plot(gt_ts , value=’AT’,
39 ylabel=’Ambient Temperature [ C ]’)
40 add_decom_plot(gt_ts , value=’AP’,
41 ylabel=’Ambient Pressure [mbar]’)
42 add_decom_plot(gt_ts , value=’AH’,
43 ylabel=’Ambient Humidity [%]’)
44 add_decom_plot(gt_ts , value=’AFDP’,
45 ylabel=’Air Filter Difference Pressure [mbar]’)
46 add_decom_plot(gt_ts , value=’GTEP’,
47 ylabel=’Gas Turbine Exhaust Pressure [mbar]’)
48 add_decom_plot(gt_ts , value=’TIT’,
49 ylabel=’Turbine Inlet Temperature [ C ]’)
50 add_decom_plot(gt_ts , value=’TAT’,
51 ylabel=’Turbine After Temperature [ C ]’)
52 add_decom_plot(gt_ts , value=’TEY’,
53 ylabel=’Turbine Energy Yield [MWH]’)
54 add_decom_plot(gt_ts , value=’CDP’,
55 ylabel=’Compressor Discharge Pressure [mbar]’)
56 add_decom_plot(gt_ts , value=’CO’,
57 ylabel=’Carbon Monoxide [$mg/m^3$]’)
58 add_decom_plot(gt_ts , value=’NOX’,
59 ylabel=’Nitrogen Oxides [$mg/m^3$]’)

1 # ADF Test - Time series stationarity
2 def ADF(input):
3 result = adfuller(input , autolag=’AIC’)
4 print(f’ADF p-value: {result [1]}’)
5

6 # KPSS Test - Trend stationarity
7 def KPSS(input):
8 result = kpss(input , regression=’c’)
9 print(’KPSS p-value: %f’ % result [1])

10

11 print(’Values for Ambient Temperature:’)
12 ADF(gt_ts.AT.values)
13 KPSS(gt_ts.AT.values)
14 print(’Values for Ambient Pressure:’)
15 ADF(gt_ts.AP.values)
16 KPSS(gt_ts.AP.values)
17 print(’Values for Ambient Humidity:’)
18 ADF(gt_ts.AH.values)
19 KPSS(gt_ts.AH.values)
20 print(’Values for Air Filter Difference Pressure:’)
21 ADF(gt_ts.AFDP.values)
22 KPSS(gt_ts.AFDP.values)
23 print(’Values for Gas Turbine Exhaust Pressure:’)
24 ADF(gt_ts.GTEP.values)
25 KPSS(gt_ts.GTEP.values)
26 print(’Values for Turbine Inlet Temperature:’)
27 ADF(gt_ts.TIT.values)
28 KPSS(gt_ts.TIT.values)
29 print(’Values for Turbine After Temperature:’)
30 ADF(gt_ts.TAT.values)
31 KPSS(gt_ts.TAT.values)
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32 print(’Values for Turbine Energy Yield:’)
33 ADF(gt_ts.TEY.values)
34 KPSS(gt_ts.TEY.values)
35 print(’Values for Compressor Discharge Pressure:’)
36 ADF(gt_ts.CDP.values)
37 KPSS(gt_ts.CDP.values)
38 print(’Values for Carbon Monoxide:’)
39 ADF(gt_ts.CO.values)
40 KPSS(gt_ts.CO.values)
41 print(’Values for Nitrogen Oxides:’)
42 ADF(gt_ts.NOX.values)
43 KPSS(gt_ts.NOX.values)

1 # Detrend the series - Substracting the Trend Component
2 def detrend(df, input , value , xlabel , ylabel):
3 result_add = seasonal_decompose(df[value], model=’additive ’,
4 extrapolate_trend=’freq’)
5 detrended = input - result_add.trend
6 plt.figure(figsize =(15 ,5))
7 plt.plot(detrended)
8 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
9 plt.show()

10

11

12 detrend(gt_ts , input=gt_ts.AT.values , value=’AT’, xlabel=’Years’,
13 ylabel=’Detrended Ambient Temperature [ C ]’)
14 detrend(gt_ts , input=gt_ts.AP.values , value=’AP’, xlabel=’Years’,
15 ylabel=’Detrended Ambient Pressure [mbar]’)
16 detrend(gt_ts , input=gt_ts.AH.values , value=’AH’, xlabel=’Years’,
17 ylabel=’Detrended Ambient Humidity [%]’)
18 detrend(gt_ts , input=gt_ts.AFDP.values , value=’AFDP’, xlabel=’Years’,
19 ylabel=’Detrended Air Filter Difference Pressure [mbar]’)
20 detrend(gt_ts , input=gt_ts.GTEP.values , value=’GTEP’, xlabel=’Years’,
21 ylabel=’Detrended Gas Turbine Exhaust Pressure [mbar]’)
22 detrend(gt_ts , input=gt_ts.TIT.values , value=’TIT’, xlabel=’Years’,
23 ylabel=’Detrended Turbine Inlet Temperature [ C ]’)
24 detrend(gt_ts , input=gt_ts.TAT.values , value=’TAT’, xlabel=’Years’,
25 ylabel=’Detrended Turbine After Temperature [ C ]’)
26 detrend(gt_ts , input=gt_ts.TEY.values , value=’TEY’, xlabel=’Years’,
27 ylabel=’Detrended Turbine Energy Yield [MWH]’)
28 detrend(gt_ts , input=gt_ts.CDP.values , value=’CDP’, xlabel=’Years’,
29 ylabel=’Detrended Compressor Discharge Pressure [mbar]’)
30 detrend(gt_ts , input=gt_ts.CO.values , value=’CO’, xlabel=’Years’,
31 ylabel=’Detrended Carbon Monoxide [$mg/m^3$]’)
32 detrend(gt_ts , input=gt_ts.NOX.values , value=’NOX’, xlabel=’Years’,
33 ylabel=’Detrended Nitrogen Oxides [$mg/m^3$]’)

1 # Test for seasonality
2 def seas_test(input , title):
3 plt.rcParams.update ({’figure.figsize ’:(12 ,5), ’figure.dpi’:120})
4 autocorrelation_plot(input.tolist ())
5 plt.title(title)
6 plt.show()
7

8 seas_test(gt_ts.AT, title=’Autocorrelation for Ambient Temperature ’)
9 seas_test(gt_ts.AP, title=’Autocorrelation for Ambient Pressure ’)

10 seas_test(gt_ts.AH, title=’Autocorrelation for Ambient Humidity ’)
11 seas_test(gt_ts.AFDP ,
12 title=’Autocorrelation for Air Filter Difference Pressure ’)
13 seas_test(gt_ts.GTEP , title=’Autocorrelation for Gas Turbine Exhaust Pressure ’)
14 seas_test(gt_ts.TIT , title=’Autocorrelation for Turbine Inlet Temperature ’)
15 seas_test(gt_ts.TAT , title=’Autocorrelation for Turbine After Temperature ’)
16 seas_test(gt_ts.TEY , title=’Autocorrelation for Turbine Energy Yield ’)
17 seas_test(gt_ts.CDP , title=’Autocorrelation for Compressor Discharge Pressure ’)
18 seas_test(gt_ts.CO, title=’Autocorrelation for Carbon Monoxide ’)
19 seas_test(gt_ts.NOX , title=’Autocorrelation for Nitrogen Oxides ’)

1 # Autocorrelation ACF and Partial Autocorrelation PACF
2 def acf_pacf(input , title1 , title2):
3 plot_acf(input)
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4 plt.title(title1)
5 plt.gca().set(xlabel=’Lag’)
6 plt.gca().set(ylabel=’Autocorrelation (ACF)’)
7 plt.show()
8 plot_pacf(input)
9 plt.title(title2)

10 plt.gca().set(xlabel=’Lag’)
11 plt.gca().set(ylabel=’Partial Autocorrelation (PACF)’)
12 plt.show()
13

14 acf_pacf(gt_ts.AT, title1=’ACF for Ambient Temperature ’,
15 title2=’PACF for Ambient Temperature ’)
16 acf_pacf(gt_ts.AP, title1=’ACF for Ambient Pressure ’,
17 title2=’PACF for Ambient Pressure ’)
18 acf_pacf(gt_ts.AH, title1=’ACF for Ambient Humidity ’,
19 title2=’PACF for Ambient Humidity ’)
20 acf_pacf(gt_ts.AFDP , title1=’ACF for Air Filter Difference Pressure ’,
21 title2=’PACF for Air Filter Difference Pressure ’)
22 acf_pacf(gt_ts.GTEP , title1=’ACF for Gas Turbine Exhaust Pressure ’,
23 title2=’PACF for Gas Turbine Exhaust Pressure ’)
24 acf_pacf(gt_ts.TIT , title1=’ACF for Turbine Inlet Temperature ’,
25 title2=’PACF for Turbine Inlet Temperature ’)
26 acf_pacf(gt_ts.TAT , title1=’ACF for Turbine After Temperature ’,
27 title2=’PACF for Turbine After Temperature ’)
28 acf_pacf(gt_ts.TEY , title1=’ACF for Turbine Energy Yield ’,
29 title2=’PACF for Turbine Energy Yield’)
30 acf_pacf(gt_ts.CDP , title1=’ACF for Compressor Discharge Pressure ’,
31 title2=’PACF for Compressor Discharge Pressure ’)
32 acf_pacf(gt_ts.CO, title1=’ACF for Carbon Monoxide ’,
33 title2=’PACF for Carbon Monoxide ’)
34 acf_pacf(gt_ts.NOX , title1=’ACF for Nitrogen Oxides ’,
35 title2=’PACF for Nitrogen Oxides ’)

1 # Lag plot with lag=1
2 def lag_plt(df, value , title):
3 pd.plotting.lag_plot(df[value], lag=1, s=1, c=’firebrick ’)
4 plt.title(title)
5 plt.show()
6

7 lag_plt(gt_ts , value=’AT’, title=’Lag Plot for Ambient Temperature ’)
8 lag_plt(gt_ts , value=’AP’, title=’Lag Plot for Ambient Pressure ’)
9 lag_plt(gt_ts , value=’AH’, title=’Lag Plot for Ambient Humidity ’)

10 lag_plt(gt_ts , value=’AFDP’,
11 title=’Lag Plot for Air Filter Difference Pressure ’)
12 lag_plt(gt_ts , value=’GTEP’, title=’Lag Plot for Gas Turbine Exhaust Pressure ’)
13 lag_plt(gt_ts , value=’TIT’, title=’Lag Plot for Turbine Inlet Temperature ’)
14 lag_plt(gt_ts , value=’TAT’, title=’Lag Plot for Turbine After Temperature ’)
15 lag_plt(gt_ts , value=’TEY’, title=’Lag Plot for Turbine Energy Yield ’)
16 lag_plt(gt_ts , value=’CDP’, title=’Lag Plot for Compressor Discharge Pressure ’)
17 lag_plt(gt_ts , value=’CO’, title=’Lag Plot for Carbon Monoxide ’)
18 lag_plt(gt_ts , value=’NOX’, title=’Lag Plot for Nitrogen Oxides ’)

1 # Forecastability - Entropy
2 def forecas_entr(df, value):
3 std_dev = np.std(df[value])
4 # Calculate entropy as half the natural logarithm (base e) of the variance
5 entropy = 0.5 * np.log(2 * np.pi * np.e * std_dev **2)
6 return entropy
7

8 entropy_value = forecas_entr(gt_ts , value=’AT’)
9 print(f"Forecastability Entropy for AT: {entropy_value}")

10 entropy_value = forecas_entr(gt_ts , value=’AP’)
11 print(f"Forecastability Entropy for AP: {entropy_value}")
12 entropy_value = forecas_entr(gt_ts , value=’AH’)
13 print(f"Forecastability Entropy for AH: {entropy_value}")
14 entropy_value = forecas_entr(gt_ts , value=’AFDP’)
15 print(f"Forecastability Entropy for AFDP: {entropy_value}")
16 entropy_value = forecas_entr(gt_ts , value=’GTEP’)
17 print(f"Forecastability Entropy for GTEP: {entropy_value}")
18 entropy_value = forecas_entr(gt_ts , value=’TIT’)
19 print(f"Forecastability Entropy for TIT: {entropy_value}")
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20 entropy_value = forecas_entr(gt_ts , value=’TAT’)
21 print(f"Forecastability Entropy for TAT: {entropy_value}")
22 entropy_value = forecas_entr(gt_ts , value=’TEY’)
23 print(f"Forecastability Entropy for TEY: {entropy_value}")
24 entropy_value = forecas_entr(gt_ts , value=’CDP’)
25 print(f"Forecastability Entropy for CDP: {entropy_value}")
26 entropy_value = forecas_entr(gt_ts , value=’CO’)
27 print(f"Forecastability Entropy for CO: {entropy_value}")
28 entropy_value = forecas_entr(gt_ts , value=’NOX’)
29 print(f"Forecastability Entropy for NOX: {entropy_value}")

1 # Metrics for the different Datasets
2 gt_2011.describe ()

1 gt_2012.describe ()

1 gt_2013.describe ()

1 gt_2014.describe ()

1 gt_2015.describe ()

1 gt_ts.describe ()

1 # Boxplot of Month -wise (Seasonal) and Year -wise (trend) Distribution for all
2 # years
3 def box_seas(df, value , xlabel1 , xlabel2 , ylabel):
4 df[’year’] = [d.year for d in df.index]
5 df[’month’] = [d.strftime(’%b’) for d in df.index]
6 years = df[’year’]. unique ()
7 fig , axes = plt.subplots(1, 2, figsize =(20 ,7), dpi= 80)
8 sns.boxplot(x=’year’, y=’AT’, data=df , ax=axes [0])
9 sns.boxplot(x=’month’, y=value , data=df.loc[~df.year.isin ([2010 , 2016]) , :])

10 axes [0]. set_xlabel(xlabel1)
11 axes [0]. set_ylabel(ylabel)
12 axes [1]. set_xlabel(xlabel2)
13 axes [1]. set_ylabel(ylabel)
14 plt.show()
15 df.drop([’year’], axis=1, inplace=True)
16 df.drop([’month ’], axis=1, inplace=True)
17 return
18

19 box_seas(gt_ts , value=’AT’, xlabel1=’Year’, xlabel2=’Months ’,
20 ylabel=’Ambient Temperature [ C ]’)
21 box_seas(gt_ts , value=’AP’, xlabel1=’Year’, xlabel2=’Months ’,
22 ylabel=’Ambient Pressure [mbar]’)
23 box_seas(gt_ts , value=’AH’, xlabel1=’Year’, xlabel2=’Months ’,
24 ylabel=’Ambient Humidity [%]’)
25 box_seas(gt_ts , value=’AFDP’, xlabel1=’Year’, xlabel2=’Months ’,
26 ylabel=’Air Filter Difference Pressure [mbar]’)
27 box_seas(gt_ts , value=’GTEP’, xlabel1=’Year’, xlabel2=’Months ’,
28 ylabel=’Gas Turbine Exhaust Pressure [mbar]’)
29 box_seas(gt_ts , value=’TIT’, xlabel1=’Year’, xlabel2=’Months ’,
30 ylabel=’Turbine Inlet Temperature [ C ]’)
31 box_seas(gt_ts , value=’TAT’, xlabel1=’Year’, xlabel2=’Months ’,
32 ylabel=’Turbine After Temperature [ C ]’)
33 box_seas(gt_ts , value=’TEY’, xlabel1=’Year’, xlabel2=’Months ’,
34 ylabel=’Turbine Energy Yield [MWH]’)
35 box_seas(gt_ts , value=’CDP’, xlabel1=’Year’, xlabel2=’Months ’,
36 ylabel=’Compressor Discharge Pressure [mbar]’)
37 box_seas(gt_ts , value=’CO’, xlabel1=’Year’, xlabel2=’Months ’,
38 ylabel=’Carbon Monoxide [$mg/m^3$]’)
39 box_seas(gt_ts , value=’NOX’, xlabel1=’Year’, xlabel2=’Months ’,
40 ylabel=’Nitrogen Oxides [$mg/m^3$]’)

1 # Relative change
2 def per_change(df , value , xlabel , ylabel):
3 plt.figure(figsize =(15 ,6))
4 df[value].div(df[value ]. shift()).plot(color=’r’)
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5 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
6 plt.show()
7

8 per_change(gt_ts , value=’AT’, xlabel=’Years’,
9 ylabel=’Relative Change in Ambient Temperature [%]’)

10 per_change(gt_ts , value=’AP’, xlabel=’Years’,
11 ylabel=’Relative Change in Ambient Pressure [%]’)
12 per_change(gt_ts , value=’AH’, xlabel=’Years’,
13 ylabel=’Relative Change in Ambient Humidity [%]’)
14 per_change(gt_ts , value=’AFDP’, xlabel=’Years ’,
15 ylabel=’Relative Change in Air Filter Difference Pressure [%]’)
16 per_change(gt_ts , value=’GTEP’, xlabel=’Years ’,
17 ylabel=’Relative Change in Gas Turbine Exhaust Pressure [%]’)
18 per_change(gt_ts , value=’TIT’, xlabel=’Years’,
19 ylabel=’Relative Change in Turbine Inlet Temperature [%]’)
20 per_change(gt_ts , value=’TAT’, xlabel=’Years’,
21 ylabel=’Relative Change in Turbine After Temperature [%]’)
22 per_change(gt_ts , value=’TEY’, xlabel=’Years’,
23 ylabel=’Relative Change in Turbine Energy Yield [%]’)
24 per_change(gt_ts , value=’CDP’, xlabel=’Years’,
25 ylabel=’Relative Change in Compressor Discharge Pressure [%]’)
26 per_change(gt_ts , value=’CO’, xlabel=’Years’,
27 ylabel=’Relative Change in Carbon Monoxide [%]’)
28 per_change(gt_ts , value=’NOX’, xlabel=’Years’,
29 ylabel=’Relative Change in Nitrogen Oxides [%]’)

1 # Absolute change in successive rows
2 def abs_change(df , value , xlabel , ylabel):
3 plt.figure(figsize =(15 ,7))
4 df[value].diff().plot(color=’g’)
5 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
6 plt.show()
7

8 abs_change(gt_ts , value=’AT’, xlabel=’Years’,
9 ylabel=’Absolute Change in Ambient Temperature [ C ]’)

10 abs_change(gt_ts , value=’AP’, xlabel=’Years’,
11 ylabel=’Absolute Change in Ambient Pressure [mbar]’)
12 abs_change(gt_ts , value=’AH’, xlabel=’Years’,
13 ylabel=’Absolute Change in Ambient Humidity [%]’)
14 abs_change(gt_ts , value=’AFDP’, xlabel=’Years ’,
15 ylabel=’Absolute Change in Air Filter Difference Pressure [mbar]’)
16 abs_change(gt_ts , value=’GTEP’, xlabel=’Years ’,
17 ylabel=’Absolute Change in Gas Turbine Exhaust Pressure [mbar]’)
18 abs_change(gt_ts , value=’TIT’, xlabel=’Years’,
19 ylabel=’Absolute Change in Turbine Inlet Temperature [ C ]’)
20 abs_change(gt_ts , value=’TAT’, xlabel=’Years’,
21 ylabel=’Absolute Change in Turbine After Temperature [ C ]’)
22 abs_change(gt_ts , value=’TEY’, xlabel=’Years’,
23 ylabel=’Absolute Change in Turbine Energy Yield [MWH]’)
24 abs_change(gt_ts , value=’CDP’, xlabel=’Years’,
25 ylabel=’Absolute Change in Compressor Discharge Pressure [mbar]’)
26 abs_change(gt_ts , value=’CO’, xlabel=’Years’,
27 ylabel=’Absolute Change in Carbon Monoxide [$mg/m^3$]’)
28 abs_change(gt_ts , value=’NOX’, xlabel=’Years’,
29 ylabel=’Absolute Change in Nitrogen Oxides [$mg/m^3$]’)

1 # Ambient variables - P/T = cte
2 constant = gt_ts[’AP’]/gt_ts[’AT’]
3 const = constant.to_frame(name=’const ’)
4

5 plt.figure(figsize =(16 ,5))
6 plt.plot(const.index , const , color=’r’)
7 plt.gca().set(xlabel=’Years ’, ylabel=’P/T [mbar/ C ]’)
8 plt.show()

1 # Outliers treatment - Interquartile range method
2 columns = [’AT’, ’AP’, ’AH’, ’AFDP’, ’GTEP’, ’TIT’, ’TAT’, ’TEY’, ’CDP’, ’CO’,
3 ’NOX’]
4

5 Q1 = gt_ts[columns ]. quantile (0.25)
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6 Q3 = gt_ts[columns ]. quantile (0.75)
7 IQR = Q3 - Q1
8

9 lim_inf = Q1 - 1.5 * IQR
10 lim_sup = Q3 + 1.5 * IQR
11

12 outliers = (gt_ts[columns] < lim_inf) | (gt_ts[columns] > lim_sup)
13 gt_ts_copy = gt_ts.copy()
14

15 for col in columns:
16 col_mean = gt_ts_copy.loc[~ outliers[col], col].mean()
17 gt_ts_copy.loc[outliers[col], col] = col_mean
18

19 gt_ts_wo_outliers = gt_ts_copy.copy()
20 data_copy = gt_ts_wo_outliers.copy()
21

22 data_copy.info()

1 # Boxplot of Month -wise (Seasonal) and Year -wise (trend) Distribution for all
2 # years without outliers
3 def box_seas(df, value , xlabel1 , xlabel2 , ylabel):
4 df[’year’] = [d.year for d in df.index]
5 df[’month’] = [d.strftime(’%b’) for d in df.index]
6 years = df[’year’]. unique ()
7 fig , axes = plt.subplots(1, 2, figsize =(20 ,7), dpi= 80)
8 sns.boxplot(x=’year’, y=’AT’, data=df , ax=axes [0])
9 sns.boxplot(x=’month’, y=value , data=df.loc[~df.year.isin ([2010 , 2016]) , :])

10 axes [0]. set_xlabel(xlabel1)
11 axes [0]. set_ylabel(ylabel)
12 axes [1]. set_xlabel(xlabel2)
13 axes [1]. set_ylabel(ylabel)
14 plt.show()
15 df.drop([’year’], axis=1, inplace=True)
16 df.drop([’month ’], axis=1, inplace=True)
17 return
18

19 box_seas(gt_ts_wo_outliers , value=’AT’, xlabel1=’Year’, xlabel2=’Months ’,
20 ylabel=’Ambient Temperature [ C ]’)
21 box_seas(gt_ts_wo_outliers , value=’AP’, xlabel1=’Year’, xlabel2=’Months ’,
22 ylabel=’Ambient Pressure [mbar]’)
23 box_seas(gt_ts_wo_outliers , value=’AH’, xlabel1=’Year’, xlabel2=’Months ’,
24 ylabel=’Ambient Humidity [%]’)
25 box_seas(gt_ts_wo_outliers , value=’AFDP’, xlabel1=’Year’, xlabel2=’Months ’,
26 ylabel=’Air Filter Difference Pressure [mbar]’)
27 box_seas(gt_ts_wo_outliers , value=’GTEP’, xlabel1=’Year’, xlabel2=’Months ’,
28 ylabel=’Gas Turbine Exhaust Pressure [mbar]’)
29 box_seas(gt_ts_wo_outliers , value=’TIT’, xlabel1=’Year’, xlabel2=’Months ’,
30 ylabel=’Turbine Inlet Temperature [ C ]’)
31 box_seas(gt_ts_wo_outliers , value=’TAT’, xlabel1=’Year’, xlabel2=’Months ’,
32 ylabel=’Turbine After Temperature [ C ]’)
33 box_seas(gt_ts_wo_outliers , value=’TEY’, xlabel1=’Year’, xlabel2=’Months ’,
34 ylabel=’Turbine Energy Yield [MWH]’)
35 box_seas(gt_ts_wo_outliers , value=’CDP’, xlabel1=’Year’, xlabel2=’Months ’,
36 ylabel=’Compressor Discharge Pressure [mbar]’)
37 box_seas(gt_ts_wo_outliers , value=’CO’, xlabel1=’Year’, xlabel2=’Months ’,
38 ylabel=’Carbon Monoxide [$mg/m^3$]’)
39 box_seas(gt_ts_wo_outliers , value=’NOX’, xlabel1=’Year’, xlabel2=’Months ’,
40 ylabel=’Nitrogen Oxides [$mg/m^3$]’)

1 gt_ts_wo_outliers.describe ()

1 # Butterworth filtering
2 def butterworth_low(data , cutout_freq , order , samp_rate):
3 nyquist_freq = samp_rate / 2.0
4 normalized_cutoff = cutout_freq / nyquist_freq
5 b, a = butter(order , normalized_cutoff , btype=’low’, analog=False)
6 return filtfilt(b, a, data)
7

8 order = 3
9 cutout_freq = 0.1
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10 samp_rate = 100
11

12 for column in data_copy.columns:
13 gt_ts_wo_outliers[column] = butterworth_low(data_copy[column], cutout_freq ,
14 order , samp_rate)
15

16 def butterworth_plot(value , xlabel , ylabel):
17 plt.figure(figsize =(16, 4))
18 plt.plot(data_copy.index , data_copy[value], label=’Real values ’, marker=’o’,
19 linestyle=’’, markersize =0.4, color=’b’)
20 plt.plot(data_copy.index , gt_ts_wo_outliers[value], label=’Filtered values ’,
21 color=’r’)
22 plt.gca().set(xlabel=xlabel , ylabel=ylabel)
23 plt.legend ()
24 plt.show()
25

26 butterworth_plot(value=’AT’, xlabel=’Years’, ylabel=’Ambient Temperature [ C ]’)
27 butterworth_plot(value=’AP’, xlabel=’Years’, ylabel=’Ambient Pressure [mbar]’)
28 butterworth_plot(value=’AH’, xlabel=’Years’, ylabel=’Ambient Humidity [%]’)
29 butterworth_plot(value=’AFDP’, xlabel=’Years’,
30 ylabel=’Air Filter Difference Pressure [mbar]’)
31 butterworth_plot(value=’GTEP’, xlabel=’Years’,
32 ylabel=’Gas Turbine Exhaust Pressure [mbar]’)
33 butterworth_plot(value=’TIT’, xlabel=’Years ’,
34 ylabel=’Turbine Inlet Temperature [ C ]’)
35 butterworth_plot(value=’TAT’, xlabel=’Years ’,
36 ylabel=’Turbine After Temperature [ C ]’)
37 butterworth_plot(value=’TEY’, xlabel=’Years ’,
38 ylabel=’Turbine Energy Yield [MWH]’)
39 butterworth_plot(value=’CDP’, xlabel=’Years ’,
40 ylabel=’Compressor Discharge Pressure [mbar]’)
41 butterworth_plot(value=’CO’, xlabel=’Years’,
42 ylabel=’Carbon Monoxide [$mg/m^3$]’)
43 butterworth_plot(value=’NOX’, xlabel=’Years ’,
44 ylabel=’Nitrogen Oxides [$mg/m^3$]’)

1 # Statistically significant variables - Canonical Correlation Analysis
2 X = gt_ts_wo_outliers.iloc[:, :9]
3

4 cca = CCA(n_components =1)
5

6 def sig_var(X,y):
7 cca.fit(X, y)
8

9 correlation_coeffs = cca.x_weights_
10 feature_ranking = np.argsort(np.abs(correlation_coeffs.ravel()))[::-1]
11 cumulative_sum = np.cumsum(np.abs(correlation_coeffs[feature_ranking ]))
12 cumulative_percentage = cumulative_sum / np.sum(np.abs(correlation_coeffs))
13

14 top_features = np.where(cumulative_percentage <= 0.95) [0][ -1] + 1
15 selected_features = X.iloc[:, feature_ranking [: top_features ]]
16

17 column_names = X.columns[feature_ranking]
18

19 plt.figure(figsize =(6, 4))
20 plt.bar(column_names , np.abs(correlation_coeffs.ravel()))
21 plt.ylabel(’Normalized weights ’)
22 plt.show()
23

24 print(f"Number of features selected to represent the 95% of the cumulated"
25 f" importance: {top_features}")
26 print("Selected features:")
27 print(selected_features.columns.tolist ())
28

29 sig_var(X, y = gt_ts_wo_outliers.iloc[:, 9])
30 sig_var(X, y = gt_ts_wo_outliers.iloc[:, 10])

1 # Division in train , validation and test
2 gt_train = gt_ts_wo_outliers [( gt_ts_wo_outliers.index.year == 2011) |
3 (gt_ts_wo_outliers.index.year == 2012)] # Train 2011 and 2012
4 gt_val = gt_ts_wo_outliers [( gt_ts_wo_outliers.index.year == 2013)]
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5 # Validation 2013
6 gt_test = gt_ts_wo_outliers [( gt_ts_wo_outliers.index.year == 2014) |
7 (gt_ts_wo_outliers.index.year == 2015)] # Test 2014 and 2015
8

9 print("Number of training samples:", len(gt_train))
10 print("Number of validation samples:", len(gt_val))
11 print("Number of test samples:", len(gt_test))

1 # Data standarization - Normalization
2 train_mean = gt_train.mean()
3 train_std = gt_train.std()
4

5 train_df = (gt_train - train_mean) / train_std
6 val_df = (gt_val - train_mean) / train_std
7 test_df = (gt_test - train_mean) / train_std
8

9 df_data = pd.concat ([train_df , val_df , test_df ])
10 df_data.info()

1 # Feature selection
2 df_data_CO = df_data [[’AT’, ’AH’, ’GTEP’, ’TIT’, ’TEY’, ’CDP’, ’CO’]]
3 df_data_NOx = df_data [[’AT’, ’AH’, ’TIT’, ’TEY’, ’CDP’, ’NOX’]]

1 df_data_CO.head()

1 df_data_NOx.head()

1 # Data parsing for CO
2 df_reset_CO = df_data_CO.reset_index ().rename(columns ={’index’: ’Date Time’})
3 df_num_CO = df_reset_CO.drop(’Date Time’, axis =1)
4

5 float_data_CO = np.array(df_num_CO)
6 float_data_CO

1 # Data generator - Tensorize data
2 def generator(data , lookback , delay , min_index , max_index ,
3 shuffle , batch_size , step):
4 if max_index is None:
5 max_index = len(data) - delay - 1
6 i = min_index + lookback
7 while 1:
8 if shuffle:
9 rows = np.random.randint(min_index + lookback , max_index , size=batch_size)

10 else:
11 if i + batch_size >= max_index:
12 i = min_index + lookback
13 rows = np.arange(i, min(i + batch_size , max_index))
14 i += len(rows)
15 samples = np.zeros ((len(rows), lookback // step , data.shape [-1]))
16 targets = np.zeros ((len(rows) ,))
17 for j, row in enumerate(rows):
18 indices = range(rows[j] - lookback , rows[j], step)
19 samples[j] = data[indices]
20 targets[j] = data[rows[j] + delay ][1]
21 yield samples , targets

1 # Training , validation and test generators for CO emissions
2 lookback = 240 # our observations will go back 10 days
3 step = 12 # our observations will be sampled at one point per 12 hours
4 delay = 24 # our targets will be 24 hours in the future
5 batch_size = 128
6

7 train_min_index = 0
8 train_max_index = len(gt_train) - 1 # 2011 and 2012
9

10 val_min_index = len(gt_train)
11 val_max_index = len(gt_train) + len(gt_val) - 1 # 2013
12

13 test_min_index = len(gt_train) + len(gt_val)
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14 test_max_index = len(gt_train) + len(gt_val) + len(gt_test) - 1 # 2014 and 2015
15

16 train_gen_CO = generator(float_data_CO ,
17 lookback=lookback ,
18 delay=delay ,
19 min_index=train_min_index ,
20 max_index=train_max_index , # 2011 and 2012
21 shuffle=False ,
22 step=step ,
23 batch_size=batch_size)
24

25 val_gen_CO = generator(float_data_CO ,
26 lookback=lookback ,
27 delay=delay ,
28 min_index=val_min_index ,
29 max_index=val_max_index , # 2013
30 shuffle=False ,
31 step=step ,
32 batch_size=batch_size)
33

34 test_gen_CO = generator(float_data_CO ,
35 lookback=lookback ,
36 delay=delay ,
37 min_index=test_min_index ,
38 max_index=test_max_index ,
39 shuffle=False ,
40 step=step ,
41 batch_size=batch_size)
42

43 val_steps_CO = (val_max_index - val_min_index - lookback) // batch_size
44 print("This is how many steps to draw from ‘val_gen ‘ in order to see the whole"
45 " validation set:", val_steps_CO)
46

47 test_steps_CO = (test_max_index - test_min_index - lookback) // batch_size
48 print("This is how many steps to draw from ‘test_gen ‘ in order to see the whole"
49 " test set:", test_steps_CO)

1 # GRU model for CO - Hyperparameter optimization
2 def build_model_GRU_CO(units , learning_rate):
3 model = Sequential ()
4 model.add(GRU(units ,
5 kernel_regularizer=l2(0.1) ,
6 recurrent_regularizer=l2 (0.001) ,
7 dropout =0.3,
8 recurrent_dropout =0.5,
9 return_sequences=True ,

10 input_shape =(None , float_data_CO.shape [-1])))
11 model.add(Dense (1))
12 model.compile(optimizer=Adam(learning_rate=learning_rate), loss=’mae’)
13 return model
14

15 early_stopping = EarlyStopping(monitor=’val_loss ’, patience=4,
16 restore_best_weights=True)
17

18 units_values = [32, 64]
19 learning_rates = [0.00005 , 0.0001]
20

21 best_loss = float(’inf’)
22 best_params = {}
23

24 for units in units_values:
25 for lr in learning_rates:
26 print(f’Training for units={units}, learning_rate ={lr}’)
27

28 model = build_model_GRU_CO(units=units , learning_rate=lr)
29

30 history = model.fit_generator(train_gen_CO ,
31 steps_per_epoch =500,
32 epochs =60,
33 validation_data=val_gen_CO ,
34 validation_steps=val_steps_CO ,
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35 callbacks =[ early_stopping],
36 verbose =0)
37

38 val_loss = history.history[’val_loss ’][-1]
39 print(f’Validation Loss: {val_loss}’)
40

41 if val_loss < best_loss:
42 best_loss = val_loss
43 best_params[’units’] = units
44 best_params[’learning_rate ’] = lr
45 best_model = model
46

47 print("Best Parameters:")
48 print(best_params)
49 print("Best Validation Loss:", best_loss)

1 # Results for test set and GRU model plot for CO
2 best_model_GRU_CO = build_model_GRU_CO(units=best_params[’units’],
3 learning_rate=best_params[’learning_rate ’])
4

5 history_final_GRU_CO = best_model_GRU_CO.fit_generator(train_gen_CO ,
6 steps_per_epoch =500,
7 epochs =60,
8 validation_data=val_gen_CO ,
9 validation_steps=val_steps_CO ,

10 callbacks =[ early_stopping ])
11

12 # Overfitting check
13

14 loss_GRU_CO = history_final_GRU_CO.history[’loss’]
15 val_loss_GRU_CO = history_final_GRU_CO.history[’val_loss ’]
16

17 epochs = range(1, len(loss_GRU_CO) + 1)
18

19 plt.figure ()
20

21 plt.plot(epochs , loss_GRU_CO , ’bo’, label=’Training loss - MAE’)
22 plt.plot(epochs , val_loss_GRU_CO , ’b’, label=’Validation loss - MAE’)
23 plt.xlabel(’Epochs ’)
24 plt.legend ()
25

26 plt.show()
27

28 # Test results
29

30 test_mae = best_model_GRU_CO.evaluate_generator(test_gen_CO ,
31 steps=test_steps_CO)
32 print("MAE on test set:", test_mae)
33

34 # Model plot
35

36 plot_model(best_model_GRU_CO , show_shapes=True)

1 # Predictions for GRU model for CO
2 predictions_GRU_CO = best_model_GRU_CO.predict_generator(test_gen_CO ,
3 steps=test_steps_CO)

1 # Denormalize results for GRU model for CO
2 predictions_denormalized_GRU_CO = (predictions_GRU_CO [:,-1,:] *
3 train_std [9]) + train_mean [9]
4

5 real_values = []
6 for i in range(test_steps_CO):
7 batch_x , batch_y = next(test_gen_CO)
8 real_values.extend(batch_y)
9

10 real_values_denorm_GRU_CO = (np.array(real_values) *
11 train_std [9]) + train_mean [9]

1 # Graph of results for GRU model for CO
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2 last_2_GRU_CO = real_values_denorm_GRU_CO [16896:]
3 rest_2_GRU_CO = real_values_denorm_GRU_CO [:16896]
4 real_values_denormalized_GRU_CO = np.concatenate (( last_2_GRU_CO , rest_2_GRU_CO))
5

6 plt.figure ()
7 plt.plot(gt_test.index [0:17152] , real_values_denormalized_GRU_CO ,
8 label=’Target ’, color=’m’)
9 plt.plot(gt_test.index [0:17152] , predictions_denormalized_GRU_CO ,

10 label=’Prediction ’, color=’g’)
11 plt.xlabel(’Years’)
12 plt.ylabel(’Carbon Monoxide [$mg/m^3$]’)
13 plt.gca().xaxis.set_major_locator(plt.matplotlib.dates.YearLocator ())
14 plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter(’%Y’))
15 plt.legend ()
16 plt.show()

1 # 1D CNN model for CO - Hyperparameter optimization
2 def build_model_CNN_CO(filters , pool_size , learning_rate):
3 model = Sequential ()
4 model.add(layers.Conv1D(filters , 5, activation=’tanh’,
5 kernel_regularizer=l2(0.1) ,
6 input_shape =(None , float_data_CO.shape [-1])))
7 model.add(layers.MaxPooling1D(pool_size))
8 model.add(layers.Dropout(rate =0.3))
9 model.add(layers.Conv1D(filters , 5, activation=’tanh’,

10 kernel_regularizer=l2(0.1)))
11 model.add(layers.GlobalMaxPooling1D ())
12 model.add(layers.Dropout(rate =0.3))
13 model.add(layers.Dense (1))
14 model.compile(optimizer=Adam(learning_rate=learning_rate), loss=’mae’)
15 return model
16

17 early_stopping = EarlyStopping(monitor=’val_loss ’, patience=4,
18 restore_best_weights=True)
19

20 filters_values = [32, 64]
21 pool_size_values = [2, 3]
22 learning_rates = [0.00005 , 0.0001]
23

24 best_loss = float(’inf’)
25 best_params = {}
26

27 for filters in filters_values:
28 for pool_size in pool_size_values:
29 for lr in learning_rates:
30 print(f’Training for filters ={ filters}, pool_size ={ pool_size},’
31 f’ learning_rate ={lr}’)
32

33 model = build_model_CNN_CO(filters=filters , pool_size=pool_size ,
34 learning_rate=lr)
35

36 history = model.fit_generator(train_gen_CO ,
37 steps_per_epoch =500,
38 epochs =60,
39 validation_data=val_gen_CO ,
40 validation_steps=val_steps_CO ,
41 callbacks =[ early_stopping],
42 verbose =0)
43

44 val_loss = history.history[’val_loss ’][-1]
45 print(f’Validation Loss: {val_loss}’)
46

47 if val_loss < best_loss:
48 best_loss = val_loss
49 best_params[’filters ’] = filters
50 best_params[’pool_size ’] = pool_size
51 best_params[’learning_rate ’] = lr
52 best_model = model
53

54 print("Best Parameters:")
55 print(best_params)
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56 print("Best Validation Loss:", best_loss)

1 # Results for test set and 1D CNN model plot for CO
2 best_model_CNN_CO = build_model_CNN_CO(filters=best_params[’filters ’],
3 pool_size=best_params[’pool_size ’],
4 learning_rate=best_params[’learning_rate ’])
5

6 history_final_CNN_CO = best_model_CNN_CO.fit_generator(train_gen_CO ,
7 steps_per_epoch =500,
8 epochs =60,
9 validation_data=val_gen_CO ,

10 validation_steps=val_steps_CO ,
11 callbacks =[ early_stopping ])
12

13 # Overfitting check
14

15 loss_CNN_CO = history_final_CNN_CO.history[’loss’]
16 val_loss_CNN_CO = history_final_CNN_CO.history[’val_loss ’]
17

18 epochs = range(1, len(loss_CNN_CO) + 1)
19

20 plt.figure ()
21

22 plt.plot(epochs , loss_CNN_CO , ’bo’, label=’Training loss - MAE’)
23 plt.plot(epochs , val_loss_CNN_CO , ’b’, label=’Validation loss - MAE’)
24 plt.xlabel(’Epochs ’)
25 plt.legend ()
26

27 plt.show()
28

29 # Test results
30

31 test_mae = best_model_CNN_CO.evaluate_generator(test_gen_CO ,
32 steps=test_steps_CO)
33 print("MAE on test set:", test_mae)
34

35 plot_model(best_model_CNN_CO , show_shapes=True)

1 # Predictions for 1D CNN model for CO
2 predictions_CNN_CO = best_model_CNN_CO.predict_generator(test_gen_CO ,
3 steps=test_steps_CO)

1 # Denormalize results for 1D CNN model for CO
2 predictions_denorm_CNN_CO = (predictions_CNN_CO *
3 train_std [9]) + train_mean [9]
4

5 real_values = []
6 for i in range(test_steps_CO):
7 batch_x , batch_y = next(test_gen_CO)
8 real_values.extend(batch_y)
9

10 real_values_denorm_CNN_CO = (np.array(real_values) *
11 train_std [9]) + train_mean [9]

1 # Graph of results for 1D CNN model for CO
2 last_1_CNN_CO = predictions_denorm_CNN_CO [16768:]
3 rest_1_CNN_CO = predictions_denorm_CNN_CO [:16768]
4 predictions_denormalized_CNN_CO = np.concatenate (( last_1_CNN_CO , rest_1_CNN_CO))
5

6 last_2_CNN_CO = real_values_denorm_CNN_CO [15616:]
7 rest_2_CNN_CO = real_values_denorm_CNN_CO [:15616]
8 real_values_denormalized_CNN_CO = np.concatenate (( last_2_CNN_CO , rest_2_CNN_CO))
9

10 plt.figure ()
11 plt.plot(gt_test.index [0:17152] , real_values_denormalized_CNN_CO ,
12 label=’Target ’, color=’m’)
13 plt.plot(gt_test.index [0:17152] , predictions_denormalized_CNN_CO ,
14 label=’Prediction ’, color=’g’)
15 plt.xlabel(’Years’)
16 plt.ylabel(’Carbon Monoxide [$mg/m^3$]’)
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17 plt.gca().xaxis.set_major_locator(plt.matplotlib.dates.YearLocator ())
18 plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter(’%Y’))
19 plt.legend ()
20 plt.show()

1 # Comparison of models for CO
2 plt.figure ()
3 plt.plot(gt_test.index [0:17152] , real_values_denormalized_GRU_CO ,
4 label=’Target ’, color=’b’)
5 plt.plot(gt_test.index [0:17152] , predictions_denormalized_GRU_CO ,
6 label=’Prediction GRU’, color=’g’)
7 plt.plot(gt_test.index [0:17152] , predictions_denormalized_CNN_CO ,
8 label=’Prediction 1D CNN’, color=’r’)
9 plt.xlabel(’Years’)

10 plt.ylabel(’Carbon Monoxide [$mg/m^3$]’)
11 plt.gca().xaxis.set_major_locator(plt.matplotlib.dates.YearLocator ())
12 plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter(’%Y’))
13 plt.legend ()
14 plt.show()

1 # Data parsing for NOx
2 df_reset_NOx = df_data_NOx.reset_index ().rename(columns ={’index ’: ’Date Time’})
3 df_num_NOx = df_reset_NOx.drop(’Date Time’, axis =1)
4

5 float_data_NOx = np.array(df_num_NOx)
6 float_data_NOx

1 # Training , validation and test generators for NOx
2 lookback = 240 # our observations will go back 10 days
3 step = 12 # our observations will be sampled at one point per 12 hour
4 delay = 24 # our targets will be 24 hours in the future
5 batch_size = 128
6

7 train_min_index = 0
8 train_max_index = len(gt_train) - 1 # 2011 and 2012
9

10 val_min_index = len(gt_train)
11 val_max_index = len(gt_train) + len(gt_val) - 1 # 2013
12

13 test_min_index = len(gt_train) + len(gt_val)
14 test_max_index = len(gt_train) + len(gt_val) + len(gt_test) - 1 # 2014 and 2015
15

16 train_gen_NOx = generator(float_data_NOx ,
17 lookback=lookback ,
18 delay=delay ,
19 min_index=train_min_index ,
20 max_index=train_max_index , # 2011 and 2012
21 shuffle=False ,
22 step=step ,
23 batch_size=batch_size)
24

25 val_gen_NOx = generator(float_data_NOx ,
26 lookback=lookback ,
27 delay=delay ,
28 min_index=val_min_index ,
29 max_index=val_max_index , # 2013
30 shuffle=False ,
31 step=step ,
32 batch_size=batch_size)
33

34 test_gen_NOx = generator(float_data_NOx ,
35 lookback=lookback ,
36 delay=delay ,
37 min_index=test_min_index ,
38 max_index=test_max_index ,
39 shuffle=False ,
40 step=step ,
41 batch_size=batch_size)
42

43 val_steps_NOx = (val_max_index - val_min_index - lookback) // batch_size
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44 print("This is how many steps to draw from ‘val_gen ‘ in order to see the whole"
45 " validation set:", val_steps_NOx)
46

47 test_steps_NOx = (test_max_index - test_min_index - lookback) // batch_size
48 print("This is how many steps to draw from ‘test_gen ‘ in order to see the whole"
49 " test set:", test_steps_NOx)

1 # GRU model for NOx - Hyperparameter optimization
2 def build_model_GRU_NOx(units , learning_rate):
3 model = Sequential ()
4 model.add(GRU(units ,
5 kernel_regularizer=l2(0.1) ,
6 recurrent_regularizer=l2 (0.001) ,
7 dropout =0.3,
8 recurrent_dropout =0.5,
9 return_sequences=True ,

10 input_shape =(None , float_data_NOx.shape [-1])))
11 model.add(Dense (1))
12 model.compile(optimizer=Adam(learning_rate=learning_rate), loss=’mae’)
13 return model
14

15 early_stopping = EarlyStopping(monitor=’val_loss ’, patience=4,
16 restore_best_weights=True)
17

18 units_values = [32, 64]
19 learning_rates = [0.00005 , 0.0001]
20

21 best_loss = float(’inf’)
22 best_params = {}
23

24 for units in units_values:
25 for lr in learning_rates:
26 print(f’Training for units={units}, learning_rate ={lr}’)
27

28 model = build_model_GRU_NOx(units=units , learning_rate=lr)
29

30 history = model.fit_generator(train_gen_NOx ,
31 steps_per_epoch =500,
32 epochs =60,
33 validation_data=val_gen_NOx ,
34 validation_steps=val_steps_NOx ,
35 callbacks =[ early_stopping],
36 verbose =0)
37

38 val_loss = history.history[’val_loss ’][-1]
39 print(f’Validation Loss: {val_loss}’)
40

41 if val_loss < best_loss:
42 best_loss = val_loss
43 best_params[’units’] = units
44 best_params[’learning_rate ’] = lr
45 best_model = model
46

47 print("Best Parameters:")
48 print(best_params)
49 print("Best Validation Loss:", best_loss)

1 # Results for test set and GRU model plot for NOx
2 best_model_GRU_NOx = build_model_GRU_NOx(units=best_params[’units ’],
3 learning_rate=best_params[’learning_rate ’])
4

5 history_final_GRU_NOx = best_model_GRU_NOx.fit_generator(train_gen_NOx ,
6 steps_per_epoch =500,
7 epochs =60,
8 validation_data=val_gen_NOx ,
9 validation_steps=val_steps_NOx ,

10 callbacks =[ early_stopping ])
11

12 # Overfitting check
13

14 loss_GRU_NOx = history_final_GRU_NOx.history[’loss’]
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15 val_loss_GRU_NOx = history_final_GRU_NOx.history[’val_loss ’]
16

17 epochs = range(1, len(loss_GRU_NOx) + 1)
18

19 plt.figure ()
20

21 plt.plot(epochs , loss_GRU_NOx , ’bo’, label=’Training loss - MAE’)
22 plt.plot(epochs , val_loss_GRU_NOx , ’b’, label=’Validation loss - MAE’)
23 plt.xlabel(’Epochs ’)
24 plt.legend ()
25

26 plt.show()
27

28 # Test results
29

30 test_mae = best_model_GRU_NOx.evaluate_generator(test_gen_NOx ,
31 steps=test_steps_NOx)
32 print("MAE on test set:", test_mae)
33

34 plot_model(best_model_GRU_NOx , show_shapes=True)

1 # Predictions for GRU model for NOx
2 predictions_GRU_NOx = best_model_GRU_NOx.predict_generator(test_gen_NOx ,
3 steps=test_steps_NOx)

1 # Denormalize results for GRU model for NOx
2 predictions_denormalized_GRU_NOx = (predictions_GRU_NOx [:,-1,:] *
3 train_std [10]) + train_mean [10]
4

5 real_values = []
6 for i in range(test_steps_NOx):
7 batch_x , batch_y = next(test_gen_NOx)
8 real_values.extend(batch_y)
9

10 real_values_denorm_GRU_NOx = (np.array(real_values) *
11 train_std [10]) + train_mean [10]

1 # Graph of results for GRU model for NOx
2 last_2_GRU_NOx = real_values_denorm_GRU_NOx [16896:]
3 rest_2_GRU_NOx = real_values_denorm_GRU_NOx [:16896]
4 real_values_denormalized_GRU_NOx = np.concatenate (( last_2_GRU_NOx ,
5 rest_2_GRU_NOx))
6

7 plt.figure ()
8 plt.plot(gt_test.index [0:17152] , real_values_denormalized_GRU_NOx ,
9 label=’Target ’, color=’m’)

10 plt.plot(gt_test.index [0:17152] , predictions_denormalized_GRU_NOx ,
11 label=’Prediction ’, color=’g’)
12 plt.xlabel(’Years’)
13 plt.ylabel(’Nitrogen Oxides [$mg/m^3$]’)
14 plt.gca().xaxis.set_major_locator(plt.matplotlib.dates.YearLocator ())
15 plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter(’%Y’))
16 plt.legend ()
17 plt.show()

1 # 1D CNN model for NOx - Hyperparameter optimization
2 def build_model_CNN_NOx(filters , pool_size , learning_rate):
3 model = Sequential ()
4 model.add(layers.Conv1D(filters , 5, activation=’tanh’,
5 kernel_regularizer=l2(0.1) ,
6 input_shape =(None , float_data_NOx.shape [-1])))
7 model.add(layers.MaxPooling1D(pool_size))
8 model.add(layers.Dropout(rate =0.3))
9 model.add(layers.Conv1D(filters , 5, activation=’tanh’,

10 kernel_regularizer=l2(0.1)))
11 model.add(layers.GlobalMaxPooling1D ())
12 model.add(layers.Dropout(rate =0.3))
13 model.add(layers.Dense (1))
14 model.compile(optimizer=Adam(learning_rate=learning_rate), loss=’mae’)
15 return model



128 Appendix

16

17 early_stopping = EarlyStopping(monitor=’val_loss ’, patience=4,
18 restore_best_weights=True)
19

20 filters_values = [32, 64]
21 pool_size_values = [2, 3]
22 learning_rates = [0.00005 , 0.0001]
23

24 best_loss = float(’inf’)
25 best_params = {}
26

27 for filters in filters_values:
28 for pool_size in pool_size_values:
29 for lr in learning_rates:
30 print(f’Training for filters ={ filters}, pool_size ={ pool_size},’
31 f’ learning_rate ={lr}’)
32

33 model = build_model_CNN_NOx(filters=filters , pool_size=pool_size ,
34 learning_rate=lr)
35

36 history = model.fit_generator(train_gen_NOx ,
37 steps_per_epoch =500,
38 epochs =60,
39 validation_data=val_gen_NOx ,
40 validation_steps=val_steps_NOx ,
41 callbacks =[ early_stopping],
42 verbose =0)
43

44 val_loss = history.history[’val_loss ’][-1]
45 print(f’Validation Loss: {val_loss}’)
46

47 if val_loss < best_loss:
48 best_loss = val_loss
49 best_params[’filters ’] = filters
50 best_params[’pool_size ’] = pool_size
51 best_params[’learning_rate ’] = lr
52 best_model = model
53

54 print("Best Parameters:")
55 print(best_params)
56 print("Best Validation Loss:", best_loss)

1 # Results for test set and 1D CNN model plot for NOx
2 best_model_CNN_NOx = build_model_CNN_NOx(filters=best_params[’filters ’],
3 pool_size=best_params[’pool_size ’],
4 learning_rate=best_params[’learning_rate ’])
5

6 history_final_CNN_NOx = best_model_CNN_NOx.fit_generator(train_gen_NOx ,
7 steps_per_epoch =500,
8 epochs =60,
9 validation_data=val_gen_NOx ,

10 validation_steps=val_steps_NOx ,
11 callbacks =[ early_stopping ])
12

13 # Overfitting check
14

15 loss_CNN_NOx = history_final_CNN_NOx.history[’loss’]
16 val_loss_CNN_NOx = history_final_CNN_NOx.history[’val_loss ’]
17

18 epochs = range(1, len(loss_CNN_NOx) + 1)
19

20 plt.figure ()
21

22 plt.plot(epochs , loss_CNN_NOx , ’bo’, label=’Training loss - MAE’)
23 plt.plot(epochs , val_loss_CNN_NOx , ’b’, label=’Validation loss - MAE’)
24 plt.xlabel(’Epochs ’)
25 plt.legend ()
26

27 plt.show()
28

29 # Test results
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30

31 test_mae = best_model_CNN_NOx.evaluate_generator(test_gen_NOx ,
32 steps=test_steps_NOx)
33 print("MAE on test set:", test_mae)
34

35 plot_model(best_model_CNN_NOx , show_shapes=True)

1 # Predictions for 1D CNN model for NOx
2 predictions_CNN_NOx = best_model_CNN_NOx.predict_generator(test_gen_NOx ,
3 steps=test_steps_NOx)

1 # Denormalize results for 1D CNN model for NOx
2 predictions_denorm_CNN_NOx = (predictions_CNN_NOx *
3 train_std [10]) + train_mean [10]
4

5 real_values = []
6 for i in range(test_steps_NOx):
7 batch_x , batch_y = next(test_gen_NOx)
8 real_values.extend(batch_y)
9

10 real_values_denorm_CNN_NOx = (np.array(real_values) *
11 train_std [10]) + train_mean [10]

1 # Graph of results for 1D CNN model for NOx
2 last_1_CNN_NOx = predictions_denorm_CNN_NOx [16384:]
3 rest_1_CNN_NOx = predictions_denorm_CNN_NOx [:16384]
4 predictions_denormalized_CNN_NOx = np.concatenate (( last_1_CNN_NOx ,
5 rest_1_CNN_NOx))
6

7 last_2_CNN_NOx = real_values_denorm_CNN_NOx [15232:]
8 rest_2_CNN_NOx = real_values_denorm_CNN_NOx [:15232]
9 real_values_denormalized_CNN_NOx = np.concatenate (( last_2_CNN_NOx ,

10 rest_2_CNN_NOx))
11

12 plt.figure ()
13 plt.plot(gt_test.index [0:17152] , real_values_denormalized_CNN_NOx ,
14 label=’Target ’, color=’m’)
15 plt.plot(gt_test.index [0:17152] , predictions_denormalized_CNN_NOx ,
16 label=’Prediction ’, color=’g’)
17 plt.xlabel(’Years’)
18 plt.ylabel(’Nitrogen Oxides [$mg/m^3$]’)
19 plt.gca().xaxis.set_major_locator(plt.matplotlib.dates.YearLocator ())
20 plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter(’%Y’))
21 plt.legend ()
22 plt.show()

1 # Comparison of models for NOx
2 plt.figure ()
3 plt.plot(gt_test.index [0:17152] , real_values_denormalized_GRU_NOx ,
4 label=’Target ’, color=’b’)
5 plt.plot(gt_test.index [0:17152] , predictions_denormalized_GRU_NOx ,
6 label=’Prediction GRU’, color=’g’)
7 plt.plot(gt_test.index [0:17152] , predictions_denormalized_CNN_NOx ,
8 label=’Prediction 1D CNN’, color=’r’)
9 plt.xlabel(’Years’)

10 plt.ylabel(’Nitrogen Oxides [$mg/m^3$]’)
11 plt.gca().xaxis.set_major_locator(plt.matplotlib.dates.YearLocator ())
12 plt.gca().xaxis.set_major_formatter(plt.matplotlib.dates.DateFormatter(’%Y’))
13 plt.legend ()
14 plt.show()
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II. Additional figures and tables

Figure 1: Ambient pressure graph obtained with forward fill method for filling missing values

Figure 2: Ambient pressure graph obtained with forward linear interpolation for filling missing values

Figure 3: Ambient pressure graph obtained with seasonal mean (n=2920) method for filling missing values
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Figure 4: Ambient pressure graph obtained with KNN mean (n=2920) method for filling missing values

Figure 5: Ambient humidity graph obtained with forward fill method for filling missing values

Figure 6: Ambient humidity graph obtained with forward linear interpolation for filling missing values
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Figure 7: Ambient humidity graph obtained with seasonal mean (n=2920) method for filling missing values

Figure 8: Ambient humidity graph obtained with KNN mean (n=2920) method for filling missing values

Figure 9: Air filter difference pressure graph obtained with forward fill method for filling missing values
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Figure 10: Air filter difference pressure graph obtained with forward linear interpolation for filling missing values

Figure 11: Air filter difference pressure graph obtained with seasonal mean (n=2920) method for filling missing values

Figure 12: Air filter difference pressure graph obtained with KNN mean (n=2920) method for filling missing values
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Figure 13: Gas turbine exhaust pressure graph obtained with forward fill method for filling missing values

Figure 14: Gas turbine exhaust pressure graph obtained with forward linear interpolation for filling missing values

Figure 15: Gas turbine exhaust pressure graph obtained with seasonal mean (n=2920) method for filling missing values
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Figure 16: Gas turbine exhaust pressure graph obtained with KNN mean (n=2920) method for filling missing values

Figure 17: Turbine inlet temperature graph obtained with forward fill method for filling missing values

Figure 18: Turbine inlet temperature graph obtained with forward linear interpolation for filling missing values
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Figure 19: Turbine inlet temperature graph obtained with seasonal mean (n=2920) method for filling missing values

Figure 20: Turbine inlet temperature graph obtained with KNN mean (n=2920) method for filling missing values

Figure 21: Turbine after temperature graph obtained with forward fill method for filling missing values
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Figure 22: Turbine after temperature graph obtained with forward linear interpolation for filling missing values

Figure 23: Turbine after temperature graph obtained with seasonal mean (n=2920) method for filling missing values

Figure 24: Turbine after temperature graph obtained with KNN mean (n=2920) method for filling missing values
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Figure 25: Turbine energy yield graph obtained with forward fill method for filling missing values

Figure 26: Turbine energy yield graph obtained with forward linear interpolation for filling missing values

Figure 27: Turbine energy yield graph obtained with seasonal mean (n=2920) method for filling missing values
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Figure 28: Turbine energy yield graph obtained with KNN mean (n=2920) method for filling missing values

Figure 29: Compressor discharge pressure graph obtained with forward fill method for filling missing values

Figure 30: Compressor discharge pressure graph obtained with forward linear interpolation for filling missing values
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Figure 31: Compressor discharge pressure graph obtained with seasonal mean (n=2920) method for filling missing values

Figure 32: Compressor discharge pressure graph obtained with KNN mean (n=2920) method for filling missing values

Figure 33: Carbon monoxide emissions graph obtained with forward fill method for filling missing values
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Figure 34: Carbon monoxide emissions graph obtained with forward linear interpolation for filling missing values

Figure 35: Carbon monoxide emissions graph obtained with seasonal mean (n=2920) method for filling missing values

Figure 36: Carbon monoxide emissions graph obtained with KNN mean (n=2920) method for filling missing values
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Figure 37: Nitrogen oxides emissions graph obtained with forward fill method for filling missing values

Figure 38: Nitrogen oxides emissions graph obtained with forward linear interpolation for filling missing values

Figure 39: Nitrogen oxides emissions graph obtained with seasonal mean (n=2920) method for filling missing values
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Figure 40: Nitrogen oxides emissions graph obtained with KNN mean (n=2920) method for filling missing values

MSE MAE

Forward Fill 526192.19 725.35
Linear Interpolation 357941.38 595.49

Seasonal Mean 479696.91 692.58
KNN Mean 402436.09 634.34

Table 1: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for ambient pressure feature

MSE MAE

Forward Fill 227.19 11.48
Linear Interpolation 694.29 16.72

Seasonal Mean 201.03 10.77
KNN Mean 207.60 11.02

Table 2: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for ambient humidity feature

MSE MAE

Forward Fill 0.59 0.61
Linear Interpolation 0.71 0.70

Seasonal Mean 0.57 0.58
KNN Mean 0.58 0.63

Table 3: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for air filter difference pressure
feature

MSE MAE

Forward Fill 16.86 3.23
Linear Interpolation 53.52 4.82

Seasonal Mean 14.50 2.88
KNN Mean 14.36 2.90

Table 4: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for gas turbine exhaust pressure
feature
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MSE MAE

Forward Fill 497201.28 704.90
Linear Interpolation 409499.09 636.48

Seasonal Mean 560407.63 748.41
KNN Mean 431619.56 656.76

Table 5: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for turbine inlet temperature
feature

MSE MAE

Forward Fill 44831.28 211.68
Linear Interpolation 37297.18 184.89

Seasonal Mean 28443.81 168.59
KNN Mean 33563.03 183.14

Table 6: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for turbine after temperature
feature

MSE MAE

Forward Fill 202.77 11.05
Linear Interpolation 1494.37 20.93

Seasonal Mean 190.78 10.44
KNN Mean 191.30 10.46

Table 7: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for turbine energy yield feature

MSE MAE

Forward Fill 1.01 0.77
Linear Interpolation 7.13 1.45

Seasonal Mean 0.93 0.74
KNN Mean 0.93 0.73

Table 8: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for compressor discharge
pressure feature

MSE MAE

Forward Fill 15.87 2.51
Linear Interpolation 7.35 1.70

Seasonal Mean 4.47 1.09
KNN Mean 4.48 1.22

Table 9: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for carbon monoxide emissions
feature
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MSE MAE

Forward Fill 348.81 16.24
Linear Interpolation 661.50 19.74

Seasonal Mean 144.74 9.90
KNN Mean 180.95 11.45

Table 10: Results of MSE and MAE obtained using different methods to fill missing values in the dataset for nitrogen oxides emissions
feature

Figure 41: Original time series and trend for ambient pressure feature with additive decomposition

Figure 42: Seasonality plot for ambient pressure feature with additive decomposition
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Figure 43: Decomposition residuals (noise) for ambient pressure feature with additive decomposition

Figure 44: Original time series and trend for ambient humidity feature with additive decomposition

Figure 45: Seasonality plot for ambient humidity feature with additive decomposition
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Figure 46: Decomposition residuals (noise) for ambient humidity feature with additive decomposition

Figure 47: Original time series and trend for air filter difference pressure feature with additive decomposition

Figure 48: Seasonality plot for air filter difference pressure feature with additive decomposition
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Figure 49: Decomposition residuals (noise) for air filter difference pressure feature with additive decomposition

Figure 50: Original time series and trend for gas turbine exhaust pressure feature with additive decomposition

Figure 51: Seasonality plot for gas turbine exhaust pressure feature with additive decomposition
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Figure 52: Decomposition residuals (noise) for gas turbine exhaust pressure feature with additive decomposition

Figure 53: Original time series and trend for turbine inlet temperature feature with additive decomposition

Figure 54: Seasonality plot for turbine inlet temperature feature with additive decomposition
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Figure 55: Decomposition residuals (noise) for turbine inlet temperature feature with additive decomposition

Figure 56: Original time series and trend for turbine after temperature feature with additive decomposition

Figure 57: Seasonality plot for turbine after temperature feature with additive decomposition
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Figure 58: Decomposition residuals (noise) for turbine after temperature feature with additive decomposition

Figure 59: Original time series and trend for turbine energy yield feature with additive decomposition

Figure 60: Seasonality plot for turbine energy yield feature with additive decomposition
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Figure 61: Decomposition residuals (noise) for turbine energy yield feature with additive decomposition

Figure 62: Original time series and trend for compressor discharge pressure feature with additive decomposition

Figure 63: Seasonality plot for compressor discharge pressure feature with additive decomposition
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Figure 64: Decomposition residuals (noise) for compressor discharge pressure feature with additive decomposition

Figure 65: Original time series and trend for carbon monoxide emissions feature with additive decomposition

Figure 66: Seasonality plot for carbon monoxide emissions feature with additive decomposition
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Figure 67: Decomposition residuals (noise) for carbon monoxide emissions feature with additive decomposition

Figure 68: Original time series and trend for nitrogen oxides emissions feature with additive decomposition

Figure 69: Seasonality plot for nitrogen oxides emissions feature with additive decomposition
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Figure 70: Decomposition residuals (noise) for nitrogen oxides emissions feature with additive decomposition

Figure 71: Detrended plot for ambient temperature feature

Figure 72: Detrended plot for ambient humidity feature
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Figure 73: Detrended plot for air filter difference pressure feature

Figure 74: Detrended plot for gas turbine exhaust pressure feature

Figure 75: Detrended plot for turbine inlet temperature feature
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Figure 76: Detrended plot for turbine after temperature feature

Figure 77: Detrended plot for turbine energy yield feature

Figure 78: Detrended plot for compressor discharge pressure feature
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Figure 79: Seasonality plot for ambient humidity feature

Figure 80: Seasonality plot for air filter difference pressure feature

Figure 81: Seasonality plot for gas turbine exhaust pressure feature
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Figure 82: Seasonality plot for turbine inlet temperature feature

Figure 83: Seasonality plot for turbine after temperature feature

Figure 84: Seasonality plot for turbine energy yield feature
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Figure 85: Seasonality plot for compressor discharge pressure feature

Figure 86: Seasonality plot for carbon monoxide emissions feature

Figure 87: Seasonality plot for nitrogen oxides emissions feature
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Figure 88: ACF plot for ambient pressure feature

Figure 89: PACF plot for ambient pressure feature

Figure 90: ACF plot for ambient humidity feature
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Figure 91: PACF plot for ambient humidity feature

Figure 92: ACF plot for air filter difference pressure feature

Figure 93: PACF plot for air filter difference pressure feature
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Figure 94: ACF plot for gas turbine exhaust pressure feature

Figure 95: PACF plot for gas turbine exhaust pressure feature

Figure 96: ACF plot for turbine inlet temperature feature
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Figure 97: PACF plot for turbine inlet temperature feature

Figure 98: ACF plot for turbine after temperature feature

Figure 99: PACF plot for turbine after temperature feature
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Figure 100: ACF plot for turbine energy yield feature

Figure 101: PACF plot for turbine energy yield feature

Figure 102: ACF plot for compressor discharge pressure feature
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Figure 103: PACF plot for compressor discharge pressure feature

Figure 104: ACF plot for carbon monoxide emissions feature

Figure 105: PACF plot for carbon monoxide emissions feature
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Figure 106: ACF plot for nitrogen oxides emissions feature

Figure 107: PACF plot for nitrogen oxides emissions feature

Figure 108: Lag plot for air filter difference pressure feature
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Figure 109: Lag plot for gas turbine exhaust pressure feature

Figure 110: Lag plot for turbine inlet temperature feature

Figure 111: Lag plot for turbine after temperature feature
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Figure 112: Lag plot for turbine energy yield feature

Figure 113: Lag plot for compressor discharge pressure feature

Figure 114: Lag plot for carbon monoxide emissions feature
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Figure 115: Lag plot for nitrogen oxides emissions feature

Figure 116: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for ambient pressure feature

Figure 117: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for ambient humidity feature
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Figure 118: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for air filter difference pressure feature

Figure 119: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for gas turbine exhaust pressure feature

Figure 120: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for turbine inlet temperature feature
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Figure 121: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for turbine after temperature feature

Figure 122: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for turbine energy yield feature

Figure 123: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for compressor discharge pressure feature
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Figure 124: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for carbon monoxide emissions feature

Figure 125: Relative change for ambient temperature feature over the years

Figure 126: Relative change for ambient pressure feature over the years
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Figure 127: Relative change for ambient humidity feature over the years

Figure 128: Relative change for air filter difference pressure feature over the years

Figure 129: Relative change for gas turbine exhaust pressure feature over the years
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Figure 130: Relative change for turbine inlet temperature feature over the years

Figure 131: Relative change for turbine after temperature feature over the years

Figure 132: Relative change for turbine energy yield feature over the years
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Figure 133: Relative change for compressor discharge pressure feature over the years

Figure 134: Relative change for nitrogen oxides emissions feature over the years

Figure 135: Absolute change for ambient temperature feature over the years
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Figure 136: Absolute change for ambient pressure feature over the years

Figure 137: Absolute change for ambient humidity feature over the years

Figure 138: Absolute change for air filter difference pressure feature over the years
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Figure 139: Absolute change for gas turbine exhaust pressure feature over the years

Figure 140: Absolute change for turbine inlet temperature feature over the years

Figure 141: Absolute change for turbine after temperature feature over the years
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Figure 142: Absolute change for turbine energy yield feature over the years

Figure 143: Absolute change for compressor discharge pressure feature over the years

Figure 144: Absolute change for nitrogen oxides emissions feature over the years
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Figure 145: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for ambient pressure feature after outliers removal

Figure 146: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for ambient humidity feature after outliers removal

Figure 147: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for air filter difference pressure feature after outliers
removal
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Figure 148: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for gas turbine exhaust pressure feature after outliers
removal

Figure 149: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for turbine inlet temperature feature after outliers
removal

Figure 150: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for turbine after temperature feature after outliers
removal
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Figure 151: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for turbine energy yield feature after outliers removal

Figure 152: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for compressor discharge pressure feature after outliers
removal

Figure 153: Boxplot of month-wise (seasonal) and year-wise (trend) distribution for carbon monoxide emissions feature after outliers
removal
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Figure 154: Ambient temperature feature and butterworth filtering after outliers removal

Figure 155: Ambient pressure feature and butterworth filtering after outliers removal

Figure 156: Ambient humidity feature and butterworth filtering after outliers removal

Figure 157: Air filter difference pressure feature and butterworth filtering after outliers removal
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Figure 158: Gas turbine exhaust pressure feature and butterworth filtering after outliers removal

Figure 159: Turbine inlet temperature feature and butterworth filtering after outliers removal

Figure 160: Turbine after temperature feature and butterworth filtering after outliers removal

Figure 161: Turbine energy yield feature and butterworth filtering after outliers removal
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Figure 162: Compressor discharge pressure feature and butterworth filtering after outliers removal
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