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RESUMEN 

Esta tesis aborda la brecha que impide a las PYMEs acceder a búsqueda semántica y 

multimodal de nivel empresarial. Se propone y valida una arquitectura de referencia open-

source basada en PostgreSQL + pgvector que integra búsqueda léxica (BM25), vectorial 

(HNSW), fusión por RRF y RAG-to-SQL orquestado con LangChain. Se emplean embeddings de 

texto (E5, JE3,GTE) e imagen (CLIP) y se evalúa el sistema sobre una muestra operativa 

(≈15.000 ítems) del dataset FooDI-ML, utilizando etiquetas estructurales como proxy de 

relevancia. 

El plan de evaluación combina métricas proxy-based (1-NN, Silhouette, ARI/NMI, Label 

Consistency@K), multimodales (Recall@K, MRR, separación de pares) y de búsqueda híbrida 

(Hybrid Recall y Filter-Separation). Los resultados muestran que E5 ofrece mejor estructura 

local y Recall@K con filtros, mientras que GTE/JE3 aportan mayor separación útil para re-

ranking. En multimodal, la dirección imagen→texto supera a texto→imagen. La solución opera 

en CPU en tiempo real (la GPU se limita al backfill offline), manteniendo costes bajos. 

Se concluye que la arquitectura propuesta es técnica y económicamente viable para 

PYMEs y se aporta una “receta” operativa (candidatos híbridos,fusión RRF, re-ranking ligero, 

multimodal, RAG-to-SQL), junto con líneas futuras. 

Palabras clave: Búsqueda híbrida; pgvector; RAG-to-SQL; Recuperación multimodal; 

HNSW; PYMEs. 
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ABSTRACT 

This thesis tackles the adoption gap that prevents SMEs from using enterprise-grade 

semantic and multimodal search. It proposes and validates an open-source reference 

architecture built on PostgreSQL + pgvector, combining lexical search (BM25), vector search 

(HNSW), rank fusion via RRF, and RAG-to-SQL orchestrated with LangChain. Text (E5, JE3, GTE) 

and image (CLIP) embeddings are integrated and evaluated on an operational sample (~15k 

items) from the FooDI-ML dataset, using structured fields as relevance proxies. 

The evaluation plan mixes proxy-based metrics (1-NN, Silhouette, ARI/NMI, Label 

Consistency@K), multimodal metrics (Recall@K, MRR, positive/negative pair separation), and 

hybrid search metrics (Hybrid Recall, Filter-Separation). Results indicate E5 yields stronger local 

structure and higher Recall@K under filters, while GTE/JE3 provide separation signals 

beneficial for re-ranking. For cross-modal retrieval, image→text consistently outperforms 

text→image. The system meets real-time CPU operation, reserving GPUs for offline embedding 

backfill, keeping costs low. 

Overall, the architecture proves technically and economically feasible for SMEs and 

delivers a practical recipe (hybrid candidates → RRF fusion → lightweight re-ranking → 

multimodal → RAG-to-SQL), plus future work. 

Keywords: Hybrid search; pgvector; RAG-to-SQL; Multimodal retrieval; HNSW; SMEs. 
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Capítulo 1. Introducción 

1.1 Estado del arte 

La recuperación de información ha experimentado una profunda transformación, 

transitando desde enfoques léxicos, basados en la coincidencia de palabras clave, hacia 

paradigmas semánticos y multimodales. Esta evolución no solo ha sido impulsada por avances 

algorítmicos, sino también por una convergencia con nuevas tecnologías de infraestructura, 

como las bases de datos vectoriales, el almacenamiento distribuido en buckets y los sistemas 

NoSQL. Esta sinergia ha democratizado el acceso a capacidades avanzadas de búsqueda, 

abriendo un horizonte de aplicación para las Pequeñas y Medianas Empresas (PYMEs) que va 

más allá de las soluciones tradicionalmente reservadas a las grandes corporaciones. 

La literatura académica documenta esta transición en múltiples frentes. El punto de 

partida son los métodos léxicos canónicos como BM25 (Robertson & Zaragoza, 2009). La 

irrupción de los modelos transformer marcó un punto de inflexión, dando lugar a 

representaciones vectoriales densas con modelos como SBERT (Reimers & Gurevych, 2019) y 

sus variantes multilingües más recientes como Jina v3 (Jina AI, 2024). Paralelamente, se 

exploraron arquitecturas más sofisticadas para mejorar la precisión, como los modelos de 

interacción tardía ColBERT (Khattab & Zaharia, 2020) y las técnicas de re-clasificación (re-

ranking) basadas en cross-encoders (Nogueira & Cho, 2019). 

El alcance de la búsqueda semántica se expandió al dominio visual con la llegada de 

modelos multimodales como CLIP (Radford et al., 2021), capaces de crear un espacio de 

representación unificado para texto e imágenes. La evaluación rigurosa y estandarizada de 

todos estos enfoques ha sido posible gracias a benchmarks de referencia como BEIR (Thakur et 

al., 2021). 

Desde la perspectiva de la infraestructura, la viabilidad de estas técnicas en entornos 

productivos depende de dos avances clave. Por un lado, los algoritmos de búsqueda de vecinos 

próximos aproximados (ANN), como HNSW (Malkov & Yashunin, 2018), que permiten 

consultas eficientes a escala. Por otro, la integración de estas capacidades en sistemas de 

datos existentes, ejemplificada por extensiones como pgvector para PostgreSQL (pgvector 

team, 2024). Esta tendencia, combinada con la flexibilidad de la ingesta de datos desde 
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almacenamientos distribuidos (ej. S3) y bases de datos no relacionales, ha configurado un 

ecosistema tecnológico más accesible y escalable. 

La aplicación exitosa de estos componentes se observa en casos de uso industriales. 

Implementaciones a gran escala como la de Walmart (Magnani et al., 2024) demuestran el 

poder de los sistemas híbridos (léxico + vectorial) que fusionan resultados con métodos como 

Reciprocal Rank Fusion (RRF) (Cormack et al., 2009). Si bien estas soluciones a medida son 

costosas, el ecosistema de código abierto actual permite replicar su arquitectura fundamental, 

lo que representa una oportunidad estratégica para la digitalización de las PYMEs (OECD, 

2021). 

Esta revisión de la literatura permite identificar un patrón consolidado en los sistemas 

de búsqueda modernos, que se estructura en las siguientes fases: 

● Recuperación inicial de candidatos mediante una combinación de métodos léxicos 

y densos. 

● Fusión de los rankings para maximizar la cobertura y la relevancia inicial. 

● Re-clasificación de los resultados más prometedores con modelos de alta 

precisión. 

● Soporte multimodal para integrar señales textuales, visuales y estructuradas. 

● Implementación sobre arquitecturas abiertas que combinan búsqueda vectorial y 

almacenamiento distribuido. 

Esta tesis materializa dicho patrón en una solución aplicada, utilizando tecnologías de 

código abierto (PostgreSQL + pgvector, embeddings públicos) y una arquitectura de datos 

moderna, con ingesta reproducible desde buckets y formatos columnares (Parquet). 
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1.2 Contexto y justificación 

La capacidad de una organización para explotar sus datos no estructurados se ha 

convertido en un diferenciador competitivo clave. Mientras las grandes corporaciones 

tecnológicas han desarrollado ecosistemas de datos avanzados que integran inteligencia 

artificial para la búsqueda semántica y la personalización, la mayoría de las Pequeñas y 

Medianas Empresas (PYMEs) aún no han podido realizar esta transición. Esta brecha no es 

trivial; representa una barrera fundamental para la innovación y la competitividad en el 

mercado digital actual. 

La disparidad se manifiesta claramente en las arquitecturas de datos. Líderes del sector 

como Amazon (Mohan et al., 2019) y Walmart (Magnani et al., 2024) fundamentan sus 

operaciones en infraestructuras a gran escala que procesan interacciones complejas. En 

contraste, un gran número de PYMEs dependen de sistemas transaccionales tradicionales 

(como MySQL o PostgreSQL) y plataformas CRM, los cuales, si bien son robustos para la 

gestión operativa, carecen de capacidades nativas para la recuperación de información 

semántica, visual o conversacional. 

Esta limitación tecnológica tiene consecuencias directas y medibles en el negocio. La 

fricción generada por motores de búsqueda ineficaces deteriora la experiencia del usuario, 

reduce las tasas de conversión y obstaculiza la fidelización de clientes, un problema 

documentado por institutos de análisis de la industria (Baymard Institute, 2023). Por tanto, 

existe una necesidad urgente de desarrollar y validar soluciones que permitan a las PYMEs 

acceder a tecnologías de búsqueda avanzadas, nivelando el campo de juego competitivo y 

permitiéndoles capitalizar el valor estratégico de sus propios datos. 
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1.3 Planteamiento del problema 

Si bien las arquitecturas de búsqueda semántica, multimodal y conversacional ya han 

sido implementadas con éxito a gran escala —por ejemplo, en plataformas empresariales 

como las de Amazon (Mohan et al., 2019), Walmart (Magnani et al., 2024) y Salesforce 

(Salesforce, 2024)—, su adopción se basa en infraestructuras propietarias y de alto costo, 

inaccesibles para la mayoría de las Pequeñas y Medianas Empresas (PYMEs). Esto ha 

consolidado una brecha tecnológica y competitiva: mientras las grandes corporaciones 

capitalizan el valor de las búsquedas híbridas y multimodales, las PYMEs continúan 

dependiendo de motores tradicionales basados en palabras clave, que ofrecen resultados 

limitados. 

El problema central no es, por tanto, la falta de tecnologías, sino la ausencia de una 

arquitectura de referencia, accesible y validada, que permita a las PYMEs emular estas 

capacidades avanzadas mediante un ecosistema de código abierto. Los sistemas actuales 

presentan una fragmentación evidente que impide una solución integral: 

● Silos de búsqueda vectorial: Motores semánticos que operan de forma aislada, sin 

una integración fluida con los datos relacionales donde reside la información 

transaccional. 

● Limitaciones de la búsqueda léxica: Sistemas tradicionales basados en algoritmos 

como BM25, que son eficientes, pero carecen de comprensión semántica profunda 

o capacidades multimodales. 

● Componentes RAG emergentes: Orquestadores de lenguaje que enriquecen las 

consultas, pero que aún no resuelven de manera estandarizada la traducción de 

lenguaje natural a consultas SQL en entornos de datos heterogéneos. 

Esta fragmentación tecnológica plantea cuatro desafíos de ingeniería interconectados 

que deben ser resueltos para ofrecer una solución viable a las PYMEs: 

● Integración arquitectónica: La necesidad de unificar datos multimodales (texto, 

imágenes, datos tabulares) y sus representaciones vectoriales dentro de una única 

base de datos relacional extendida, como PostgreSQL/pgvector. 
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● Fusión de señales: El reto de combinar eficazmente los rankings provenientes de 

métodos léxicos y semánticos, como mediante el algoritmo Reciprocal Rank Fusion 

(RRF), para maximizar la relevancia. 

● Interacción semántica-estructurada: La complejidad de traducir consultas en 

lenguaje natural, enriquecidas con contexto recuperado semánticamente (RAG), 

en sentencias SQL correctas y ejecutables. 

● Evaluación holística: La falta de un marco que mida simultáneamente la relevancia 

de la búsqueda, la calidad del SQL generado, la factualidad de las respuestas del 

RAG y la viabilidad económica de la solución. 

En este contexto, la pregunta central de investigación que guía este trabajo se formula 

de la siguiente manera: 

¿Cómo diseñar una arquitectura práctica open-source que integre bases de datos 

estándar SQL, vectores semánticos y archivos (usando bases vectoriales y almacenamiento tipo 

S3) para habilitar búsqueda unificada y gestión de objetos enfocado para PYMEs con viabilidad 

técnica y financiera? 
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1.4 Objetivos del proyecto 

Objetivo general: 

Diseñar y validar un motor de recuperación multimodal para datos heterogéneos que 

combine búsqueda léxica y semántica (texto e imagen) mediante almacenamiento vectorial 

que integre datos estructurados y representaciones semánticas. La implementación de 

referencia se realiza en PostgreSQL/pgvector, manteniendo la arquitectura agnóstica a 

tecnología para facilitar su adopción en otras plataformas equivalentes, con foco en relevancia 

y eficiencia operativa en pymes. 

Objetivos específicos: 

1. Diseñar la arquitectura de datos multimodal sobre PostgreSQL/pgvector (esquema, 

migraciones e índices), manteniendo abstracciones agnósticas para portabilidad a 

otras plataformas equivalentes. 

2. Implementar la ingesta reproducible (S3 → filtrado → Parquet → Postgres) con 

validaciones por defecto y CLI, asegurando calidad y trazabilidad de datos. 

3. Integrar y evaluar embeddings de texto e imagen (JE‑3, E5, GTE, CLIP 1024D/512D); 

realizar backfill eficiente y crear índices HNSW adecuados por espacio vectorial. 

4. Construir el motor de búsqueda híbrida (BM25 + vectores) con fusión de rankings (p. 

ej., RRF) y recuperación multimodal texto-imagen. 

5. Implementar un RAG mínimo de demostración e integrar LangChain para generar y 

ejecutar SQL sobre Postgres, mostrando de forma amigable cómo el contexto 

recuperado sustenta las respuestas y consultas. 

6. Definir y ejecutar un plan de evaluación centrado en: 

● Calidad de SQL: Exact Match, Execution Success y correctitud semántica contra 

gold sets. 

● Métricas: Score@K, PWR, POC, alignment, hybrid gain 

● Factualidad/Faithfulness del RAG: grado en que las respuestas están sustentadas 

por el contexto recuperado. 

● Costo operativo: estimación por consulta/sesión (tokens LLM + DB). 
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Capítulo 2. Marco Teórico 

La Recuperación de Información (RI) ha transitado de métodos léxicos, basados en 

coincidencias literales de términos, hacia paradigmas semánticos y multimodales que buscan 

capturar el significado y la intención del usuario. Este cambio se sustenta tanto en avances 

algorítmicos como en innovaciones en infraestructura y aprendizaje profundo (Robertson & 

Zaragoza, 2009; Vaswani et al., 2017). En este capítulo se presentan los fundamentos teóricos 

de la búsqueda híbrida y de la Generación Aumentada por Recuperación (RAG), tecnologías 

que articulan el sistema propuesto. 

2.1 Búsqueda Léxica y el Algoritmo BM25 

La búsqueda léxica, también denominada bag-of-words, representa documentos como 

conjuntos no ordenados de términos, ignorando el contexto semántico. Su implementación en 

bases de datos se da a través de la búsqueda de texto completo (Full-Text Search), disponible 

en PostgreSQL. 

El algoritmo BM25 (Robertson & Zaragoza, 2009) es el estándar de este paradigma. Su 

fórmula de relevancia para un documento 𝐷 dado una consulta 𝑄 es: 

𝑠𝑐𝑜𝑟𝑒(𝐷, 𝑄) = ∑ 𝐼𝐷𝐹(𝑞𝑖) ∙
𝑓(𝑞𝑖, 𝐷) ∙ (𝐾1 + 1)

𝑓(𝑞𝑖, 𝐷) + 𝑘1 ∙ (1 − 𝑏 + 𝑏 ∙
|𝐷|

𝑎𝑣𝑔𝑑𝑙

𝑛

𝑖=1

 

donde 𝑓(𝑞𝑖, 𝐷) es la frecuencia del término, 𝑎𝑣𝑔𝑑𝑙 la longitud promedio de 

documentos, y 𝑏, 𝑘1 parámetros de ajuste. Su solidez teórica y eficiencia explican por qué 

sigue siendo un pilar en arquitecturas híbridas modernas. 

2.2 FTS en PostgreSQL 

PostgreSQL implementa Full-Text Search (FTS) con índices y operadores especializados, 

integrables con SQL estándar y transacciones ACID: ideal para combinar metadatos 

estructurados y campos textuales. En tu contexto (PYME), FTS aporta un baseline léxico 

estable que se fusiona después con el ranking vectorial. 
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2.3 Embeddings 

 

Los embeddings son representaciones numéricas densas de fragmentos de 

información (palabras, frases, imágenes) en un espacio vectorial de alta dimensión. El principio 

fundamental es que la distancia en este espacio vectorial se corresponde con la similitud 

semántica en el mundo real. A diferencia de un one-hot encoding, los embeddings capturan 

relaciones complejas: palabras con significados cercanos se ubican próximas en ese espacio. 

Este "espacio semántico" permite realizar operaciones matemáticas con el significado. 

La similitud entre dos vectores, que representa la similitud entre dos conceptos, suele 

calcularse con la similitud coseno (Manning et al., 2008): 

sin(𝐴, 𝐵) = cos(𝜃) =
𝐴 ∙ 𝐵

‖𝐴‖ ∙ ‖𝐵‖
 

Un valor cercano a 1 indica una alta similitud semántica, mientras que un valor cercano 

a 0 indica disimilitud, permitiendo comparar textos o imágenes independientemente de las 

palabras clave que contengan. Los modelos modernos como multilingual-e5-small o gte-

multilingual-base son codificadores de texto especializados en producir embeddings de alta 

calidad para tareas de recuperación. 

2.4 RRNs y CNNs 

Antes de los Transformers, el PLN se apoyaba en: 

• Redes Neuronales Recurrentes (RNNs): procesan secuencias palabra por 

palabra, manteniendo un estado interno que captura dependencias temporales. 

Son útiles en lenguaje, pero sufren de limitaciones de memoria a largo plazo. 

• Redes Neuronales Convolucionales (CNNs): originalmente diseñadas para visión 

por computadora, aplican filtros convolucionales que capturan patrones locales. 

Se usaron en lenguaje para detectar n-grams o frases clave. 

Ambos enfoques fueron superados en flexibilidad y paralelización por la arquitectura 

Transformer (Vaswani et al., 2017). 

2.5 La Arquitectura Transformer y el Mecanismo de Atención 
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La verdadera revolución en el PLN llegó con la arquitectura Transformer, introducida 

por Vaswani et al. (2017). A diferencia de las RNNs, que procesan texto de forma secuencial, 

los Transformers procesan secuencias enteras de una vez. Su innovación clave es el mecanismo 

de auto-atención (self-attention), que permite al modelo ponderar la importancia de 

diferentes palabras en una secuencia al codificar una palabra específica. 

En la práctica, esto significa que el modelo puede capturar dependencias a larga 

distancia y entender el contexto de una palabra basándose en toda la oración, no solo en las 

palabras adyacentes. Por ejemplo, en la frase "El banco emitió un comunicado sobre las tasas 

del banco de arena", el mecanismo de atención puede diferenciar los dos significados de 

"banco". 

 Esta capacidad para generar representaciones vectoriales ricas en contexto es lo que 

hace que modelos como BERT (Devlin et al., 2019) y sus sucesores sean tan potentes para 

tareas de búsqueda semántica. 

2.6 Modelos de Lenguaje Grandes (LLMs) 

Los LLMs (Large Language Models) son modelos neuronales de gran escala (con miles 

de millones de parámetros), entrenados en vastos corpus de texto. Estos modelos son capaces 

de comprender y generar lenguaje natural con alta coherencia (Devlin et al., 2019; Lewis et al., 

2020). Por ejemplo: GPT, BERT, SBERT, E5. Si bien, la capacidad de estos modelos está en 

constante mejora, estos tienen varias limitaciones, como lo son: conocimiento estático y 

tendencia a generar “alucinaciones” (información plausible pero incorrecta). 

2.7 Multimodalidad y CLIP 

El modelo CLIP (Radford et al., 2021) entrena dos codificadores (imagen y texto) en un 

mismo espacio vectorial mediante aprendizaje contrastivo. Con esto es posible buscar 

imágenes a partir de texto y viceversa, habilitando tareas de clasificación zero-shot. 

CLIP (OpenAI), aprende un espacio conjunto texto-imagen mediante aprendizaje 

contrastivo a gran escala; es “estándar” para zero-shot y recuperación multimodal. Limitación 

conocida: el encoder de texto original opera con ventanas cortas (~77 tokens), lo que restringe 

las descripciones muy largas. 
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Jina CLIP v2 (Jina AI), es un modelo multimodal multilingüe reciente con ventanas 

largas (≈ 8 K tokens para texto) y “Matryoshka embeddings” (permiten reducir 

dimensionalidad sin reentrenar). En escenarios de producto (búsqueda catálogo, activos 

visuales), reduce complejidad al servir texto↔texto y texto↔imagen con un solo modelo. 

  

Clip-ViT-B-32-multilingual-v1, desarrollado por Sentence-Transformers, es una versión 

multilingüe del CLIP-ViT-B/32 y mapea texto (en más de 50 idiomas) e imagenes a un espacio 

vectorial compartido. Para lograr esta capacidad multilingüe, utiliza el método de Multilingual 

Knowledge Distillation: entrena un modelo DistilBERT multilingüe (como estudiante) para 

alinearse con el espacio de embeddings del encoder de imágenes original de CLIP. 

 

2.8 Modelos de Embeddings de Texto 

multilingual-e5-small, desarrollado por Microsoft, este modelo genera embeddings de 

alta calidad para tareas de recuperación de información en más de 100 idiomas. Su ventaja 

principal es la eficiencia, con un tamaño reducido (384 dimensiones), lo que lo hace ideal para 

entornos con recursos limitados. 

gte-multilingual-base (General Text Embeddings), perteneciente a la Alibaba Group, 

este modelo se optimiza para la representación de texto en más de 70 idiomas y destaca por 

su capacidad para manejar contextos largos de hasta 8192 tokens. 

Jina Embeddings v3,  es un modelo de embeddings multilingüe de texto con 570 

millones de parámetros y capacidad para procesar secuencias de hasta 8 192 tokens gracias a 

la incorporación de Rotary Position Embeddings (RoPE) . Además, integra adaptadores LoRA 

específicos por tarea (como retrieval.query, classification, text-matching, etc.), que suman 

menos del 3 % de los parámetros y permiten ajustar el modelado según el objetivo, sin 

incrementar significativamente la carga computacional. 

2.9 Bases de Datos Vectoriales y la Indexación ANN con HNSW 

La búsqueda semántica a escala presenta un desafío computacional: comparar un 

vector de consulta con millones de vectores en una base de datos (búsqueda exhaustiva o de 
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fuerza bruta) es inviable en tiempo real. La solución a este problema son los algoritmos de 

Búsqueda de Vecinos Próximos Aproximados (Approximate Nearest Neighbors, ANN). 

En lugar de garantizar encontrar el vecino más cercano, los algoritmos ANN 

encuentran candidatos muy cercanos con una alta probabilidad, sacrificando una fracción de 

precisión a cambio de una mejora drástica en la velocidad. Esto ha dado lugar al concepto de 

base de datos vectorial, sistemas optimizados para almacenar, indexar y consultar embeddings 

de alta dimensión. 

El algoritmo HNSW (Hierarchical Navigable Small World) es uno de los métodos ANN 

más eficientes y populares. Organiza los vectores en un grafo jerárquico multinivel. En los 

niveles superiores, los enlaces conectan nodos distantes (permitiendo saltos largos a través del 

espacio vectorial), mientras que en los niveles inferiores, los enlaces son cortos y conectan 

vecinos cercanos. La búsqueda comienza en el nivel superior, navegando rápidamente hacia la 

región de interés, y luego desciende a los niveles más detallados para refinar la búsqueda 

(Malkov & Yashunin, 2018).  

Extensiones como pgvector para PostgreSQL integran esta capacidad directamente en 

una base de datos relacional, permitiendo unificar datos estructurados y vectoriales en un solo 

sistema. 

 

2.10 Búsqueda Híbrida y RRF 

Para combinar búsqueda léxica y vectorial se usa Reciprocal Rank Fusion (RRF) 

(Cormack et al., 2009), que fusiona listas de resultados según su posición en cada ranking: 

RRFd=r∈R1k+rankr(d) 

Esto aprovecha la precisión léxica y la flexibilidad semántica. 

2.11 Generación Aumentada por Recuperación (RAG) 

La arquitectura RAG (Lewis et al., 2020) fue diseñada para mitigar las limitaciones 

inherentes de los LLMs, como el conocimiento estático y la tendencia a generar 

"alucinaciones". RAG combina un Retriever (recuperador) con un Generator (generador, un 

LLM) en un flujo sinérgico: 
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• Recuperación (Retrieval): Ante una consulta del usuario, el Retriever (en este caso, el 

motor de búsqueda híbrida) busca en una base de conocimientos (los datos indexados) 

y extrae los fragmentos de información más relevantes. 

• Aumentación (Augmentation): Los fragmentos recuperados se inyectan como 

contexto adicional en el prompt que se enviará al LLM, junto con la pregunta original 

del usuario. 

• Generación (Generation): El LLM recibe este prompt "aumentado" y genera una 

respuesta en lenguaje natural, con la instrucción de basarse exclusivamente en el 

contexto proporcionado. 

Este enfoque mejora drásticamente la factualidad y la trazabilidad de las respuestas, 

ya que estas quedan "ancladas" a los datos reales de la organización. Frameworks como 

LangChain, se especializan en orquestar este flujo de forma modular y eficiente. 

 

2.12 Métricas de evaluación 

Estas métricas evalúan la estructura y coherencia del espacio de embeddings sin 

necesidad de consultas de prueba. 

2.12.1 1-NN Accuracy (Leave-One-Out) 

Mide la calidad de la representación vectorial. Para cada elemento, se busca a su 

vecino más cercano (1-NN) en el espacio vectorial. Si el vecino más cercano comparte la misma 

etiqueta (ej. categoría de producto), se considera un acierto. Una alta precisión indica que los 

embeddings agrupan semánticamente los elementos de manera efectiva (Cover & Hart, 1967). 

• Silhouette Score: Cuantifica qué tan bien definidos están los clústeres de datos en el 

espacio vectorial. Un puntaje alto indica que los elementos están muy cerca de otros 

en su mismo clúster y lejos de los elementos de clústeres vecinos, lo que sugiere una 

buena separación semántica (Rousseeuw, 1987). 

• Clustering Purity (ARI & NMI)e utilizan el Índice de Rand Ajustado (ARI) y la 

Información Mutua Normalizada (NMI) para medir la pureza de los clústeres formados 

por los embeddings en comparación con las categorías de producto existentes. El ARI 

corrige por azar la similitud entre dos particiones (Hubert & Arabie, 1985), mientras 
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que el NMI mide la dependencia estadística entre los clústeres y las etiquetas reales. 

Valores cercanos a 1 en ambos indican una alta pureza. 

2.12.2 Multimodal Alignment 

Estas métricas se centran en evaluar la capacidad del sistema para conectar texto e 

imágenes de manera coherente. 

• Recall@K (Cross-Modal Retrieval): Mide la capacidad del sistema para recuperar la 

imagen correcta a partir de una consulta de texto (y viceversa) dentro de los K 

primeros resultados. Un alto Recall@K es fundamental para demostrar que el espacio 

semántico unificado es coherente entre ambas modalidades. 

• Mean Reciprocal Rank (MRR): Evalúa la posición del primer resultado correcto en una 

tarea de recuperación cruzada. Es especialmente útil porque da más peso a los 

sistemas que devuelven el resultado correcto en las primeras posiciones, lo cual es 

crucial para la experiencia del usuario (Craswell, 2009). 

• Positive vs. Negative Pair Separation: Mide la distancia en el espacio vectorial entre 

pares "positivos" (una imagen y su descripción correcta) y pares "negativos" (una 

imagen y una descripción incorrecta). Una separación clara y amplia es indicativa de un 

modelo de embedding robusto que ha aprendido a distinguir eficazmente las 

relaciones semánticas. 

 

2.12.3 Hybrid Search Quality 

Estas métricas cuantifican el valor añadido de combinar la búsqueda léxica y la 

semántica. 

• Hybrid Recall: Mide el porcentaje de resultados relevantes recuperados por el sistema 

híbrido en comparación con los sistemas léxico y vectorial por separado. El objetivo es 

demostrar que la fusión (RRF) logra una cobertura de resultados relevantes superior a 

la de sus componentes individuales. 

• Filter-Separation Score: Esta métrica evalúa la capacidad del sistema para distinguir 

entre resultados que coinciden con un filtro explícito (ej. "hamburguesas") y aquellos 
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que son solo semánticamente similares pero no pertenecen a la categoría. Una buena 

separación indica que el sistema puede manejar consultas que combinan filtros 

estructurados con intención semántica. 
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Capítulo 3. Metodología 

La presente investigación se enmarca en la Investigación en Ciencia del Diseño (Design 

Science Research, DSR), un enfoque ampliamente utilizado en proyectos donde el objetivo 

principal es la construcción y validación de artefactos tecnológicos (Hevner et al., 2004). Este 

marco metodológico resulta pertinente, dado que la tesis se centra en concebir, implementar y 

evaluar un motor de búsqueda híbrido y multimodal orientado a PYMEs. 

En particular, se adopta la estructura propuesta por Peffers et al. (2007), que organiza 

el proceso en seis fases, mencionadas a continuación. 

3.1 Fase 1 - Identificación del problema y motivación 

Se identificó la brecha tecnológica entre grandes corporaciones, que cuentan con 

motores de búsqueda semánticos y multimodales propietarios, y las PYMEs, que dependen de 

motores tradicionales basados en coincidencia léxica. El problema radica en la falta de 

arquitecturas accesibles que integren de forma unificada recuperación híbrida, multimodalidad 

y generación de consultas estructuradas (RAG-to-SQL). 

3.2 Fase 2 - Definición de los Objetivos de la Solución 

El objetivo general es diseñar y validar una arquitectura tecnológica basada en 

tecnologías open-source, que combinen recuperación léxica y semántica (texto e imagen), 

integrando datos estructurados y representaciones vectoriales, con capacidad de interacción 

mediante RAG, para emular las capacidades de motores de búsqueda empresariales a un costo 

accesible para PYMEs. 

3.3 Fase 3 - Diseño y Desarrollo del Artefacto 

Se adoptó un enfoque modular e incremental, que asegura portabilidad tecnológica, 

validación temprana y viabilidad en entornos de bajo costo. Aunque en el prototipado se 

emplearon GPUs para acelerar procesos intensivos, la solución final es agnóstica a la 

infraestructura, pudiendo ejecutarse en entornos sin hardware especializado. 

Con base en estos lineamientos, la arquitectura se compone de los siguientes 

módulos: 
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● Pipeline de ingesta reproducible (S3 → Parquet → PostgreSQL). 

● Embeddings multimodales de texto (E5, JE3, GTE) e imagen (CLIP). 

●  Indexación vectorial con HNSW sobre pgvector. 

● Motor híbrido de búsqueda (BM25 + vectores, con fusión mediante RRF). 

● Componente RAG con LangChain y LangGraph para consultas en lenguaje natural y 

generación de SQL. 

3.4 Fase 4 - Demostración 

Una vez construido, el artefacto se utiliza para resolver una instancia del problema. En 

este proyecto, la demostración consiste en la ejecución del prototipo final sobre el dataset de 

Glovo (FooDI-ML), que incluye información estructurada (pedidos, precios, restaurantes) y no 

estructurada (descripciones, imágenes). 

La demostración consistió en mostrar: 

● Recuperación híbrida en consultas textuales. 

● Recuperación multimodal texto-imagen. 

● Generación de respuestas en lenguaje natural mediante RAG. 

● Traducción de consultas en lenguaje natural a SQL ejecutable. 

3.5  Fase 5 - Evaluación 

La evaluación del artefacto se diseñó con un enfoque multifacético, considerando no 

solo la precisión de la recuperación, sino también la calidad del ranking, la coherencia 

multimodal y la efectividad de la búsqueda híbrida. Para ello, se utilizaron métricas específicas 

agrupadas en tres dimensiones principales: Relevance & Ranking Quality (Proxy-Based), 

Multimodal Alignment & Hybrid Search Quality (Score@K, PWR, POC, alignment, hybrid 

gain). 

3.6 Fase 6 - Comunicación 

La principal vía de comunicación es el presente documento de tesis, complementado por el 

repositorio de código fuente público en GitHub: linaB-R/vector-hybrid-search/, que asegura la 

transparencia y reproducibilidad de la investigación, aportando la "arquitectura de referencia" 

como una de las contribuciones clave del trabajo. 
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3.7 Cronograma 

Tabla 1 Cronograma 

Mes Actividad principal Actividades clave Herramientas / Técnicas 
principales 

1 Revisión sistemática 
y definición de 
arquitectura 

Revisión de literatura (DSR, 
búsqueda híbrida, RAG), 
definición de objetivos, diseño 
de arquitectura modular 
(pipeline, embeddings, motor 
híbrido, RAG). 

Análisis bibliográfico, 
PostgreSQL, pgvector, 
diseño conceptual, 
diagramación de 
arquitectura 

2 Ingesta de datos y 
generación de 
embeddings 

Implementación de pipeline 
reproducible (S3 → Parquet → 
PostgreSQL), limpieza y 
normalización, generación de 
embeddings de texto (E5, 
JE3,GTE) e imagen (CLIP). 

Python, PyTorch, 
HuggingFace 
Transformers, CLIP, 
pgvector, CUDA (Colab en 
prototipado) 

3 Desarrollo del motor 
híbrido y 
componente RAG 

Construcción del índice HNSW en 
pgvector, integración de BM25 + 
vectores con RRF, 
implementación del componente 
RAG-to-SQL con LangChain y 
LangGraph. 

PostgreSQL, pgvector 
(HNSW), BM25, RRF, 
LangChain, LangGraph, 
desarrollo en Python 

4 Demostración y 
evaluación inicial 

Aplicación del sistema al caso de 
Glovo, pruebas funcionales de 
búsqueda híbrida y multimodal, 
medición de métricas (Score@K, 
PWR, POC, alignment, gain). 

Relevance & Ranking 
Quality, Multimodal 
Alignment, Hybrid Search 
Quality, Python, análisis 
comparativo 

5 Optimización, 
documentación y 
comunicación de 
resultados 

Ajuste de parámetros (índices, 
embeddings, fusión), 
benchmarking, documentación 
técnica y académica, preparación 
del informe final y conclusiones. 

Benchmarking, tuning 
HNSW, documentación, 
redacción académica, 
GitHub, presentación de 
resultados 
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Capítulo 4. Implementación 

 

El desarrollo se llevó a cabo en Python, utilizando un ecosistema de librerías de código 

abierto. El stack tecnológico principal incluye PostgreSQL con la extensión pgvector como base 

de datos unificada, PyTorch y Transformers de Hugging Face para el modelado semántico, y 

LangChain para la orquestación del flujo de Generación Aumentada por Recuperación (RAG). 

A continuación, se presenta el proceso del prototipo del sistema de búsqueda híbrida 

desarrollado, ilustrado a través de un diagrama. 

 

 

 

 

} 

 

 

 

 

 

Ilustración 1. Diagrama de flujo del proyecto 

4.1 Arquitectura General del Sistema 

La arquitectura del sistema está diseñada como un pipeline modular que transforma 

datos heterogéneos en respuestas inteligentes y trazables. El flujo de datos de extremo a 

extremo sigue la secuencia: 

➔ Ingesta: Los datos se extraen de una fuente de almacenamiento de objetos (AWS S3), 

se transforman a un formato optimizado (Parquet) y se cargan en la base de datos 

PostgreSQL. 
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➔ Indexación: Se generan representaciones vectoriales (embeddings) para el texto y las 

imágenes, que se almacenan e indexan en pgvector junto a un índice léxico tradicional. 

➔ Segmentación del conocimiento (chunking):  Se emplea un chunking de ventana fija 

con solapamiento ligero (10–15%), generando fragmentos de 300–400 tokens a partir 

de product_name + product_description y conservando como metadatos store_name, 

country_code, city_code y collection_section. Este es el método estándar más simple: 

es reproducible, funciona bien tanto en CPU como GPU, y ofrece una relación señal–

ruido adecuado para el tamaño muestral utilizado en este trabajo. En esta fase se 

prioriza la simplicidad operativa y la baja latencia porque la muestra no es lo 

suficientemente grande como para justificar el costo de ingeniería adicional. 

➔ Recuperación Híbrida: Ante una consulta, el sistema recupera candidatos tanto del 

índice léxico (BM25) como del vectorial (HNSW), y fusiona los resultados (RRF) para 

maximizar la relevancia. 

➔ Generación Aumentada: Los candidatos recuperados sirven como contexto para un 

Modelo de Lenguaje Grande (LLM) que genera una respuesta en lenguaje natural. 
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4.2 Pipeline de Ingesta y Preparación de Datos 

4.2.1 Extracción de Datos desde la Fuente (AWS S3) 

El desarrollo y la validación del sistema se llevaron a cabo sobre el conjunto de datos 

público FooDI-ML de Glovo, una colección de 9.5 millones de registros alojada en AWS S3. Para 

la construcción del prototipo, se extrajo mediante la librería boto3 una muestra operativa de 

15,000 registros. La selección de esta muestra se realizó tras un proceso de filtrado, donde; se 

seleccionaron únicamente los registros de países de habla hispana y registros sin datos 

faltantes en las columnas de interés e imágenes (product_name, collection_section, 

product_description).  

4.2.2 Transformación y Almacenamiento Intermedio 

Los datos textuales, inicialmente en formato CSV, fueron procesados y convertidos al 

formato Apache Parquet. Esta elección se justifica por la eficiencia del almacenamiento 

columnar, la cual optimiza la compresión y acelera significativamente la lectura y pre-

procesamiento de datos.  

4.2.3 Carga y Estructuración en la Base de Datos 

Los datos procesados se cargaron en una instancia de PostgreSQL (gestionada a través 

de Supabase). Previamente, se habilitó la extensión pgvector en la base de datos y se diseñó 

un esquema relacional que incluye columnas de tipo vector para almacenar los futuros 

embeddings de texto e imágenes, junto a los datos estructurados del catálogo. 
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4.3 Generación y Almacenamiento de Embeddings 

4.3.1 Selección de Modelos de Representación 

La selección de los modelos de embedding se realizó a través de un proceso de 

evaluación comparativa para determinar la opción óptima para cada modalidad del proyecto, 

priorizando el balance entre la calidad de la recuperación y la eficiencia computacional. 

Modelos de Texto Multilingüe: 

Se compararon los modelos multilingual-e5-small y gte-multilingual-base, ambos con 

un sólido rendimiento reportado en el benchmark MTEB para tareas de recuperación 

multilingüe. Además, se incorporó el modelo jina-embeddings-v3 (JE3), un modelo avanzado 

multilingüe de alto rendimiento que supera a modelos como los propietarios de OpenAI y 

Cohere, y que incluso supera a multilingual-e5-large-instruct en todas las tareas multilingües 

del benchmark MTEB, manteniendo además una mayor eficiencia y soporte para entradas de 

texto muy largas (hasta 8192 tokens) gracias a técnicas como late chunking y LoRA-adapters.  

Modelos Multimodales (Texto e Imagen) 

Se evaluaron los modelos de embeddings para imágenes openai/clip-vit-base-patch32 

y sentence-transformers/clip-ViT-B-32-multilingual-v1, ambos mapean texto e imágenes a un 

espacio semántico común. El último es una versión multilingüe del CLIP-ViT-B/32 que permite 

procesar texto en más de 50 idiomas alineado con el encoder de imágenes. 

También se exploró el modelo multimodal jina-clip-v2, que sobresale tanto en 

recuperación texto → texto como en texto ↔ imagen, sirviendo de puente eficiente entre 

modalidades sin requerir modelos separados. Por costos de computación no se utilizó para la 

evaluación final. 

Las imágenes utilizadas para la evaluación fueron procesadas directamente desde su 

origen en buckets de AWS S3. 

El procesamiento multimodal se realiza en dos pasos claramente diferenciados: 

1. Imagen → Texto: se genera embedding de la imagen (con clip-ViT ), y se calcula su 

similitud con embeddings de texto para recuperar descripciones o información 

textual relevante. 
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2. Texto → Imagen: se genera embedding del texto (incluido texto multilingüe si 

aplica), y se compara con embeddings de imágenes para recuperar las imágenes más 

pertinentes. 

 

4.3.2 Generación de Vectores (Batch Processing) 

La vectorización de los 15.000 registros se ejecutó en modo offline mediante cómputo 

por lotes en GPU (Google Colab con acelerador CUDA), fijando un batch size de 512 para 

maximizar el rendimiento sin exceder memoria de dispositivo.  

El flujo implementa: (i) lectura por lotes desde PostgreSQL, (ii) normalización ligera de 

texto (minúsculas, NFKC, limpieza de URLs y símbolos), (iii) inferencia batcheada del modelo 

(GPU) y (iv) actualización masiva de la columna vectorial mediante UPDATE ... FROM 

(VALUES ...) con execute_values, grabando cada embedding en el tipo pgvector. Este 

enfoque amortiza I/O y reduce viajes a base de datos, a la vez que aprovecha el paralelismo de 

CUDA para acelerar la inferencia por lotes. 

Colab permite habilitar GPU/T4 y soporte CUDA para PyTorch; los lotes grandes 

tienden a mejorar throughput (más items/seg), aunque con posibles costos de latencia y uso 

de memoria. Para cargas intensivas, técnicas como mixed precision (AMP) ayudan a reducir 

memoria y aumentar velocidad en GPUs con Tensor Cores. 

El mismo procedimiento se aplicó de forma análoga a los demás modelos de 

Embeddings tanto para texto como para imgenes. 

 

4.4 Motor de Recuperación Híbrida (Recall) 

El núcleo del sistema es un motor de recuperación que combina lo mejor de los mundos 

léxico y semántico para maximizar la cobertura (recall) de resultados relevantes. 

4.4.1 Implementación de la Búsqueda Léxica (BM25) 

Se utilizó la funcionalidad de Full-Text Search (FTS) nativa de PostgreSQL, 

configurando un índice tsvector sobre las columnas textuales. Este índice permite realizar 

búsquedas léxicas eficientes que, aunque no capturan la semántica, son robustas ante 

términos raros, códigos de producto y errores tipográficos menores. El algoritmo de ranking 

subyacente es una implementación de BM25. 
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4.4.2 Implementación de la Búsqueda Vectorial (ANN-HNSW) 

Para la búsqueda semántica, se construyó un índice HNSW (Hierarchical Navigable 

Small Worlds) sobre cada columna de tipo vector utilizando pgvector. Los hiperparámetros del 

índice (m, ef_construction, ef_search) se ajustaron experimentalmente para encontrar un 

balance óptimo entre la precisión de la recuperación y la latencia de la consulta, de acuerdo 

con las recomendaciones de la documentación de pgvector y la literatura sobre ANN. 

4.4.3 Fusión de Resultados: Sin fusión obligatoria 

El sistema opera solo con el índice primario (vectorial e5 u otros embeddings + filtros 

estructurados) y ordenar por su puntuación nativa (coseno/HNSW). 

 

4.5 Orquestación y Generación de Respuestas (RAG) 

4.5.1 Procesamiento de la Consulta de Entrada (Query Pipeline) 

Cuando un usuario introduce una consulta, esta pasa por un pipeline de optimización 

antes de la recuperación: 

● Generación de Embedding: La consulta se convierte en un vector utilizando el 

mismo modelo E5 u otros vectores disponibles que se usó para la indexación. 

● Extracción de Filtros: Se extraen de la consulta posibles filtros estructurados que 

se aplicarán como cláusulas WHERE u otros filtros en SQL. 

4.5.2 Implementación del Flujo RAG con LangChain 

Se utilizó la librería LangChain para orquestar el flujo RAG. El motor de búsqueda 

híbrida actúa como el "Recuperador" (Retriever). El flujo sigue el patrón canónico de RAG 

(Lewis et al., 2020): se recuperan los top-k documentos relevantes y se inyectan en una 

plantilla de prompt. Durante la indexación, los documentos se dividen en chunks de ventana 

fija (tamaño constante con solapamiento ligero), lo que simplifica la orquestación y mantiene 

la consistencia del contexto en la generación. 
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4.5.3 Generación de Respuestas con Trazabilidad 

El prompt final, que contiene las instrucciones, la pregunta del usuario y el contexto 

recuperado, se envía a un LLM. La instrucción principal fuerza al modelo a basar su respuesta 

exclusivamente en la evidencia proporcionada y a citar sus fuentes (trazabilidad mínima hacia 

los fragmentos recuperados). 

4.5.4 Generación de Respuestas con Trazabilidad 

• Regla de evidencia en el prompt: “Responde solo con la información del contexto; si 

falta evidencia, di ‘No se encontró evidencia suficiente en la base’ y detente.” 

• Capado de contexto: k = 6–8 y máx. 1200 tokens de contexto; recorte por 

oración/párrafo (no palabra a palabra). 

• Trazabilidad mínima en la salida: listar 2–3 referencias del contexto usado 

(store_name, product_name y s3_url/id). 

• Determinismo: temperature = 0 y top_p = 0.1 para respuestas estables. 

• Fallback seguro: si k = 0 tras aplicar filtros o no hay evidencia suficiente, emitir el 

mensaje de ausencia de evidencia y no inventar contenido. 

• Idioma: responder en el idioma detectado (ES por defecto). 

• Segmentación explícita: mantener chunks de ventana fija (con solapamiento ligero) y 

evitar heurísticas complejas de chunking semántico para no aumentar la superficie de 

preguntas técnicas. 

•  

4.6 Preparación para la Evaluación 

Para garantizar una validación rigurosa y cuantitativa del artefacto, se diseñó un 

entorno de evaluación que trasciende las métricas tradicionales de recuperación de 

información (IR). Este entorno incorpora un conjunto de métricas personalizadas, orientadas a 

medir el rendimiento desde una perspectiva práctica y centrada en el producto. 

Análisis de Confianza del Ranking (Score@K): Para diagnosticar la confianza del 

sistema en sus resultados, se registró el Score@K. Este indicador corresponde a la puntuación 

de similitud bruta (coseno o BM25) del ítem en la posición K, permitiendo observar cómo 

decae la certeza a lo largo de la lista de resultados. 

Comparación de Sistemas (Predicted Win Rate - PWR): Para comparar directamente 

la efectividad del sistema híbrido frente al baseline léxico, se implementó el Predicted Win 

Rate (PWR). Esta métrica fue utilizada para estimar la probabilidad de que un usuario prefiera 
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la lista de resultados del sistema propuesto, sirviendo como un indicador clave del éxito 

relativo. 

Calidad del Ordenamiento (Probability of Choice - POC): Para evaluar si los resultados 

más importantes aparecen primero, se calculó la Probability of Choice (POC). Este indicador 

mide la probabilidad de que el resultado más relevante para el usuario se encuentre en las 

primeras posiciones, penalizando a los sistemas que ocultan los mejores ítems en posiciones 

inferiores. 

Medición del Impacto Global (Hybrid Gain): Finalmente, para cuantificar el beneficio 

neto de la arquitectura, se definió la Ganancia Híbrida (Hybrid Gain). Este indicador agregado 

sintetiza la mejora en la calidad del sistema fusionado en comparación con el rendimiento de 

sus componentes por separado, sirviendo como la medida final del éxito. 

  



Sistema inteligente de búsqueda y coincidencia basado en Vector Stores 

 

34 

 

Capítulo 5. Resultados 

 

5.1 Diseño de la evaluación y datos 

La evaluación se llevó a cabo sobre una muestra operativa de 15.000 registros 

extraídos del dataset público FooDI-ML de Glovo (AWS S3), filtrando países hispanohablantes 

y registros completos en las columnas de interés con imagen. Esta muestra se utilizó para 

indexación léxica (BM25) y vectorial (pgvector/HNSW). 

El entorno de evaluación consideró, además de métricas IR estándar, indicadores 

operativos definidos para el prototipo (Score@K, PWR, POC y Hybrid Gain), con el objetivo de 

medir no solo la recuperación, sino también la calidad percibida del ranking y la ganancia del 

enfoque híbrido. 

5.2 Relevance & Ranking Quality (Proxy-Based) 

Se evaluó la calidad del espacio de embeddings utilizando collection_section como 

proxy de relevancia, midiendo 1-NN (leave-one-out), Silhouette (coseno), ARI/NMI (KMeans) y 

Label Consistency@K con 𝐾 ∈ {1,5,10}. En este escenario, el modelo e5 mostró el mejor 

desempeño global: 

Tabla 2 Métricas globales por modelo (N, etiquetas únicas, 1-NN, Silhouette, ARI, NMI). 

model 1-NN SILHOUETTE ARI NMI unique_labels 
e5 0.189 -0.103622191 0.062921 0.884516 1163 
gte 0.1565 -0.121203296 0.047155 0.880068 1163 
je3 0.163 -0.135115728 0.045697 0.880003 1163 

 

Según los resultados de la tabla 1 se tiene que: 

En la métrica 1-NN (leave-one-out), e5 obtiene la mayor exactitud (0,189), por encima 

de je3 (0,163) y gte (0,1565), lo que indica una geometría local del embedding más coherente 

con el proxy collection_section.  
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Silhouette: Los tres modelos presentan valores negativos, consistentes con 

solapamiento entre clases y alta fragmentación del proxy (muchas etiquetas con pocos ítems). 

e5 es el menos negativo, sugiriendo ligeramente mejor separabilidad. 

ARI / NMI: e5 alcanza el mayor ARI (~0,063), mientras que NMI es similar entre 

modelos (~0,88). Esto sugiere que el alineamiento global con el proxy es comparable, y que la 

ventaja de e5 proviene principalmente de su estructura local. 

Label Consistency@K. e5 mantiene el mejor porcentaje de coincidencias en 𝐾 ∈

{1,5,10}𝐾  evidenciando mejor ordenamiento en top-K. 

Tabla 3 Label Consistency@K por modelo. 

model k label_consistency 
e5 1 0.189 
gte 1 0.1565 
je3 1 0.163 
e5 5 0.1144 
gte 5 0.1025 
je3 5 0.1003 
e5 10 0.09005 
gte 10 0.0818 
je3 10 0.08125 

En general, se observa que e5 ofrece una estructura local más alineada con el proxy, 

útil para vecindarios top-K y como señal de pre-ranking en pipelines híbridos. A continuación, 

se presentan los resultados y comparativa de los distintos modelos para las métricas del 

modelo Relevance & Ranking Quality. 
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• 1-NN Accuracy 

 
Ilustración 2 1-NN Accuracy 

 
 

● Silhouette (coseno): 

 
Ilustración 3 Silhouette por modelo 
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● ARI  

 
Ilustración 4 ARI por modelo 

● NMI 

 
Ilustración 5 NMI por modelo 

 

● Label Consistency@1/@5/@10  

 

 

 

 

 

Ilustración 7 Label Consistency@1 por modelo Ilustración 6 Label Consistency@5 por modelo 
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Ilustración 8 Label Consistency@10 por modelo 

 

5.3  Análisis por store_name (proxy alternativo) 

Rendimiento global por modelo : gte lidera en 1-NN (0,217) y en Label Consistency@K 

para K∈{1,5,10}; e5 queda detrás y je3 tercero. En ARI, gte también va primero (0,142), 

mientras que en NMI la diferencia es mínima (gte ≈0,928, e5 ≈0,926, je3 ≈0,925). Silhouette es 

levemente negativo para todos (mezcla entre tiendas), siendo je3 el más bajo (−0,101).  

Efecto de la partición por país: Con muchas etiquetas por país y tamaños 

desbalanceados, la separabilidad absoluta cae (silhouette≤0 en países grandes), pero emergen 

bolsillos locales robustos en países medianos/pequeños (CR, DO, PA, GT), donde ARI y 1-NN 

suben marcadamente y pueden superar 0,30–0,40 de ARI.  

Tabla 4 Métricas globales por modelo (proxy = store_name). 

model 1-
NN_acc 

Silhouette ARI NMI LC@1 LC@5 LC@10 unique_labels 

e5 0.198 -0.071500547 0.120395 0.926092 0.198 0.1056 0.07255 1310 

gte 0.2175 -0.070210844 0.141607 0.927703 0.2175 0.1162 0.08545 1310 

je3 0.1835 -0.101479582 0.122086 0.924717 0.1835 0.0985 0.0701 1310 

Patrones por país (muestras principales): 

ES: diferencias pequeñas; gte gana en @K y 1-NN (0,209 vs 0,200 e5), silhouette aún 

negativo (≈−0,066 a −0,098).  
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PE y AR: gte domina en @K y ARI; e5 compite en 1-NN (AR 0,261 e5 vs 0,245 gte; PE 

0,236 e5 vs 0,259 gte).  

GT/PA/CR: gte o je3 pueden tomar la punta en ARI (p.ej., CR: je3 ≈0,516), mientras gte 

mantiene ventaja en 1-NN y Consistency@K en GT/PA. Signal: mercados medianos parecen más 

“limpios” geométricamente.  

Tendencia @K: La consistencia@K decrece al crecer K, pero gte conserva la ventaja 

relativa a @5 y @10 en ES/PE/AR, lo que sugiere mejor estructura de vecindad ampliada.  

Con estos resultados se puede decir que: 

1. Espacio principal: si se prioriza recuperación@K y 1-NN en nombres de tienda, gte es 

la mejor base para el primer retrieve.  

2. Reranking híbrido: dado que je3 y e5 ganan ARI en algunos países (p. ej., je3 en CR), 

un reranking multi-modelo (top-M de gte → rerank con e5/je3/LLM-score) puede 

capturar señales locales.  

3. Filtrado estructural: con silhouette negativo en países grandes, conviene filtrar por 

país (y si aplica, familia de tiendas) antes del re-ranking para reducir mezcla.  

4. Muestreo balanceado: evaluar métricas por país con ponderación uniforme (macro-

promedio) además del promedio global, para evitar que ES domine el diagnóstico.  
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Tabla 5 Métricas por país y modelo 

 

 

 

 

country model 1-NN_acc Silhouette ARI NMI LC@1 LC@5 LC@10 
ES e5 0.199623 -0.06303 0.160141 0.923422 0.199623 0.10678 0.072693 
ES gte 0.20904 -0.06594 0.151865 0.923117 0.20904 0.112618 0.078249 
ES je3 0.179849 -0.09844 0.16276 0.922406 0.179849 0.091149 0.065443 
PE e5 0.234568 -0.03441 0.215359 0.926339 0.234568 0.098765 0.060905 
PE gte 0.259259 -0.0176 0.299865 0.93728 0.259259 0.116049 0.074897 
PE je3 0.213992 -0.04108 0.166258 0.921764 0.213992 0.093004 0.063374 
AR e5 0.26087 -0.0195 0.174279 0.897065 0.26087 0.162319 0.114976 
AR gte 0.246377 -0.02105 0.216764 0.901505 0.246377 0.173913 0.133816 
AR je3 0.251208 -0.04276 0.23928 0.904679 0.251208 0.155556 0.118841 
EC e5 0.219101 0.014475 0.313367 0.953817 0.219101 0.068539 0.040449 
EC gte 0.235955 0.018148 0.230506 0.95011 0.235955 0.077528 0.044382 
EC je3 0.174157 -0.00478 0.331296 0.95678 0.174157 0.066292 0.038202 
GT e5 0.291667 0.011004 0.322175 0.901928 0.291667 0.120833 0.066667 
GT gte 0.364583 0.046175 0.339529 0.909273 0.364583 0.135417 0.080208 
GT je3 0.270833 -0.00079 0.274211 0.897726 0.270833 0.110417 0.070833 
PA e5 0.344262 0.046874 0.317779 0.93391 0.344262 0.118033 0.070492 
PA gte 0.295082 0.047233 0.383571 0.941999 0.295082 0.127869 0.072131 
PA je3 0.262295 0.030093 0.436171 0.941178 0.262295 0.12459 0.07377 
CR e5 0.305085 0.068351 0.394717 0.951466 0.305085 0.081356 0.044068 
CR gte 0.322034 0.091623 0.394717 0.9519 0.322034 0.088136 0.045763 
CR je3 0.305085 0.076774 0.514695 0.961405 0.305085 0.081356 0.044068 
CL e5 0.121212 -0.01056 0.103261 0.913222 0.121212 0.054545 0.030303 
CL gte 0.181818 -0.01791 0.238462 0.929109 0.181818 0.054545 0.039394 
CL je3 0.060606 -0.07648 0.09589 0.911459 0.060606 0.024242 0.024242 
HN e5 0.290323 0.038757 0.316804 0.910166 0.290323 0.16129 0.087097 
HN gte 0.290323 0.018734 0.263658 0.898811 0.290323 0.135484 0.080645 
HN je3 0.290323 0.04097 0.199262 0.885749 0.290323 0.148387 0.080645 
DO e5 0.25 0.065788 0.322638 0.950273 0.25 0.06 0.03 
DO gte 0.2 0.061726 0.661319 0.975136 0.2 0.05 0.03 
DO je3 0.2 0.026131 0.661319 0.975136 0.2 0.04 0.03 
PR e5 0.375 0.009628 0.34375 0.878841 0.375 0.125 0.107143 
PR gte 0.375 0.034347 0.34375 0.878841 0.375 0.125 0.107143 
PR je3 0.375 0.016776 0.34375 0.878841 0.375 0.15 0.107143 
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Comparación de métrica @K global: 

 
Ilustración 9 Comparación de métrica @K global 

5.4 Hybrid Search Quality  

Se compararon e5, gte y je3 en un escenario híbrido (vectorial + filtros estructurados), 

evaluando 8.614 consultas con pool medio ≈792 ítems por filtro. e5 lideró el Recall@K dentro 

del conjunto filtrado (@1 = 0,080, @5 = 0,194, @10 = 0,258), mientras que gte/je3 quedaron 

muy próximos entre sí (@10 ≈0,244–0,245). En Filter-Separation, je3/gte presentaron mayores 

gaps intra vs inter para store_name y collection_section, lo cual es útil como señal de 

reranking complementaria. 

Implicación. En pipelines con filtros por país/ciudad/tienda, el sistema debería 

recuperar con e5 para maximizar el recall y luego re-rankear incorporando la separación de 

je3/gte (y, si aplica, puntuación LLM ligera) sobre el top-M. 

Tabla 6 Resumen de Recall@K (híbrido) 

model recall@1 recall@5 recall@10 queries_evaluated 
e5 0.07990767 0.193857363 0.257670446 8614 
gte 0.07565242 0.182960148 0.244041077 8614 
je3 0.07383098 0.182960148 0.245391452 8614 
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Tabla 7 Resumen de Filter-Separation por faceta 

model facet intra_mean inter_mean separation 
e5 collection_section 0.894933241 0.852989972 0.041943269 
gte collection_section 0.666226633 0.517150993 0.149075641 
je3 collection_section 0.647191949 0.462997252 0.184194697 
e5 store_name 0.896647424 0.857499747 0.039147677 
gte store_name 0.681158015 0.520996356 0.160161659 
je3 store_name 0.645431935 0.464716625 0.18071531 
 

A continuación, se presenta la comparación de tendencias en las métricas Recall@K 

visualmente: 

 

 
Ilustración 10 Tendencia Recall@K (híbrido) 

comparación de métricas Recall@K (híbrido) por modelo: 

 

 

 

 

 

 

Ilustración 11 Recall@1 (híbrido) Ilustración 12 Recall@5 (híbrido) 
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Ilustración 13 Recall@10 (híbrido) 

 

Filter-Separation y promedios intra/inter por faceta: 

 

  
Ilustración 14 Filter separation por store_name (hybrid) 

 

 

 

 
Ilustración 16 Intra vs similarity segun collection_section 

 
 

Ilustración 15  Intra vs similarity segun store_name 
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5.5 Alineación Multimodal (texto ↔ imagen) 

Se evaluó la alineación texto↔imagen sobre 15.000 pares producto–descripción 

(mismo pool de consulta y de galería). Se reportan Recall@K con K∈ {1,5,10}, MRR y la 

separación de pares positivos vs. negativos (coseno y euclidiana). Las curvas y comparativas se 

construyen por dirección de recuperación: texto→imagen (T→I) e imagen→texto (I→T). 

Hallazgos cuantitativos 

Recall@K (curvas por K + baseline aleatorio): El recall crece monótonamente con K en 

ambas direcciones, ubicándose sistemáticamente por encima del baseline aleatorio (K/N): 

o T→I: R@1 = 0,0185, R@5 = 0,0485, R@10 = 0,0705. 

o I→T: R@1 = 0,0203, R@5 = 0,0551, R@10 = 0,0801. La brecha (I→T − T→I) se 

amplía con K: ≈0,0017 (@1), ≈0,0066 (@5) y ≈0,0096 (@10), lo que indica una 

ventaja sostenida de I→T a medida que se permiten más candidatos. 

MRR (comparación por dirección): I→T presenta MRR mayor (0,0424) frente a T→I 

(0,0382), consistente con una mejoría en el rango promedio del par correcto cuando la 

consulta es una imagen. 

Separación de pares (positivos vs. negativos) 

o Coseno: μ_pos ≈ 0,275 vs μ_neg ≈ 0,224 → Δcos ≈ +0,051. 

o Euclidiana: μ_pos ≈ 1,204 vs μ_neg ≈ 1,245 → Δeuc ≈ +0,041 (distancias 

menores en positivos). 

En ambos espacios se observa brecha favorable: los pares verdaderos quedan, 

en promedio, más próximos que los aleatorios. 

Interpretación de los resultados: 

Ventaja direccional I→T. La curva de I→T domina a T→I para todos los K y también en 

MRR. Esto sugiere que, en este conjunto, las imágenes proveen una señal más estable para 

ubicar su descripción textual que a la inversa (donde el texto puede ser más 

heterogéneo/ruidoso). 
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Escala del pool y ruido semántico. Con 15k candidatos, incluso recalls del 1–2% en @1 

están muy por encima del azar, pero aún dejan margen de mejora para hits exactos al tope. El 

crecimiento con K confirma que existen múltiples candidatos cercanos semánticamente. 

Brechas positivas en coseno y euclidiana. Las diferencias Δcos y Δeuc corroboran la 

presencia de alineación contrastiva efectiva entre pares texto–imagen verdaderos, aunque 

todavía moderada en magnitud, coherente con la complejidad del dominio. 

Implicaciones practices: 

Mejorar T→I con texto más discriminativo. Enriquecer descripciones con atributos 

concretos (marca, tamaño, sabor, presentación) y normalizar nombres/taxonomías eleva la 

precisión de T→I sin perjudicar I→T. 

Re-ranking y filtros estructurados. Combinar el puntaje multimodal con filtros (tienda, 

ciudad, categorías agregadas) puede aumentar la precisión práctica en @K. 

Entrenamiento contrastivo con “hard negatives”. Incorporar negativos cercanos y 

fine-tuning de embeddings en el dominio incrementa la brecha de separación y desplaza la 

curva de Recall@K hacia arriba. 

Tabla 8 Recall@K por dirección. 

direction k recall 
texto→imagen  1 0.018533333 
texto→imagen  1 0.020266667 
texto→imagen  5 0.048466667 
texto→imagen  5 0.055133333 
texto→imagen  10 0.070533333 
texto→imagen  10 0.080133333 

 
Tabla 9 MRR por dirección. 

direction mrr 
texto→imagen  0.03815617 
imagen →texto 0.04237947 

 
 

 

 



Sistema inteligente de búsqueda y coincidencia basado en Vector Stores 

 

46 

 

Tabla 10 Separación de pares 

pairs pos_cos_mean neg_cos_mean cos_separation pos_euc_mean neg_euc_mean euc_separation 
15000 0.275012197 0.2242434 0.050768797 1.203910904 1.245344797 0.041433893 

 
 

A continuación, se observa la comparación del Recall@K por dirección (con baseline 

K/N) y Brecha I→T−T→I. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Ilustración 17 Recall @K por dirrección (aleatorio) 

Ilustración 18  Brecha Recall (I-T-T-I) por K 
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Resultados métrica MRR:   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Resultados comparación pares negativos vs positivos: 

 

 

 

Ilustración 20 Pares positivos vs negativos 

 

Ilustración 19MRR por dirección 
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Ilustración 21 Eclidiana - positivos vs negativos 

 

 

Ilustración 22 Magnitud de separación positivos - negativos 
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5.6 Discusión de resultados 

A grandes rasgos se encontró que, e5 maximiza el recall@K en escenarios con filtros 

estructurados, lo que lo convierte en una buena base de retrieve. Por otro lado, gte/je3 

aportan señales de separación útiles para reranking y para reforzar la coherencia con facetas 

como store_name o collection_section. 

En cuanto a la multimodalidad, la dirección I→T tiene ventaja consistente, atribuible a 

la variabilidad del texto frente a la estabilidad visual de las imágenes. El Silhouette negativo 

recurrente sugiere mezcla entre clases debida a taxonomías finas o ruidosas, lo que respalda 

normalizaciones y agrupación de etiquetas en etapas de data curation. 

Estos hallazgos apoyan el diseño del motor híbrido y su flujo RAG ya descritos, y 

motivan el uso de indicadores operativos (Score@K, PWR, POC, Hybrid Gain) para capturar el 

impacto práctico de las decisiones de arquitectura. 

 

5.7  Limitaciones y amenazas a la validez 

Limitaciones observadas: 

• Fragmentación de etiquetas en collection_section: muchas clases con pocos ejemplos, 

lo que reduce 1-NN y Silhouette. 

 

• Desbalance por país/tienda: países con más datos pueden dominar promedios 

globales; se recomienda monitorear macro-promedios por país. 

 

• Calibración de similitudes entre modelos: escalas diferentes dificultan la fusión 

directa; se sugiere normalización (z-score por lote/tienda o temperature scaling) 

previa al ensamble.  
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Capítulo 6. Conclusiones 

Este trabajo demuestra que, con herramientas abiertas y gratuitas, es posible dotar a 

PYMEs de un motor de búsqueda híbrido y multimodal (texto–imagen) robusto, construido 

sobre PostgreSQL + pgvector y técnicas estándar como BM25, HNSW y RRF, y orquestado con 

LangChain para un flujo RAG-to-SQL. La arquitectura, implementada de forma modular, integra 

ingesta reproducible (S3 → Parquet → PostgreSQL), indexación vectorial y fusión de rankings, 

lo que emula patrones de sistemas empresariales a un costo accesible y con operación en CPU 

para tiempo real (la GPU se limita al backfill de embeddings en procesos offline) . 

La demostración sobre una muestra operativa de 15.000 ítems del conjunto FooDI-ML 

valida la viabilidad técnica: se probó búsqueda híbrida, recuperación multimodal y RAG-to-SQL, 

con un plan de evaluación holística que va más allá de métricas IR tradicionales (incluyendo 

Score@K, PWR, POC e indicadores de ganancia híbrida). 

 

En cuanto a la estrategia de recuperación, los resultados convergen en: 

• e5 como motor de candidatos en escenarios con filtros (maximiza Recall@K); 

• BM25 en paralelo y fusión temprana para capturar coincidencias literales. 

• GTE como señal de coherencia por tienda en reranking (o retrieve primario 

cuando la intención de tienda es explícita). 

• señales de separación (gte/je3) y boosts estructurales; 

• CLIP I→T como desempate sobre el top-M cuando hay imagen. 

Todo ello se alinea con el objetivo central de ofrecer a PYMEs una arquitectura de 

referencia open-source que unifique búsqueda híbrida, multimodalidad y RAG-to-SQL 

con viabilidad económica. 
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Conclusiones personales 

Desde la perspectiva de la autora, la modularidad y la orientación a prototipos rápidos 

han sido determinantes para acercar capacidades de “gran empresa” al contexto de las PYMEs. 

Partiendo de un stack 100% abierto (PostgreSQL/pgvector, PyTorch/Transformers, LangChain), 

fue posible iterar con rapidez, medir con métricas operativas y ajustar el balance calidad–

latencia–costo. Un aprendizaje clave es que la GPU no es condición de despliegue: resulta útil 

en la indexación offline, pero la inferencia del motor puede operar en CPU, reduciendo 

barreras de entrada para negocios pequeños y medianos. En síntesis, lo híbrido vence a lo 

monolítico: combinar señales simples y abiertas (BM25 + vectores + estructura) supera a 

perseguir un único modelo “perfecto” en aislamiento. 
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Capítulo 7. Futura líneas de trabajo 

7.1 Industrialización open-source para PYMEs (coste y operación). 

El siguiente paso natural es llevar el prototipo a operación con recursos contenidos. Se 

propone la contenerización y la IaC con Docker Compose como base y una orquestación 

mínima por particiones (país/tienda) para permitir despliegues repetibles en CPU y autoscaling 

simple. En paralelo, se implementará observabilidad ligera (logging estructurado, métricas de 

latencia y Recall@K por faceta) y tableros de hibridación que muestren la proporción BM25 vs. 

vector, insumos que alimentarán el tuning descrito en 7.3. 

7.2 Curación y evaluación con “verdad-terreno”. 

Sobre esa base operativa, se requiere un marco de evaluación confiable. Se construirá 

una muestra anotada estratificada por país/tienda para estimar Recall@K y win-rate, y se 

integrarán pruebas de regresión de IR (Score@K, PWR, POC) al ciclo de CI. Este ground truth 

permitirá contrastar versiones y cuantificar mejoras de manera estadísticamente sólida, 

habilitando el tuning controlado de 7.3 y 7.4. 

7.3 Tuning de recuperación y fusión. 

Con el circuito de evaluación consolidado, se optimizarán HNSW por partición (m, 

efconstruction, efsearch) y se calibrarán escalas de similitud (z-score por dominio). Además, se 

explorará el aprendizaje de pesos de fusión (RRF ⇄ mezcla) vía un reranker ligero (regresión) 

entrenado en features abiertas (similitudes e5/gte/je3, señales léxicas y estructurales). Las 

mejoras se validarán con nDCG@K y Recall@K frente a la línea base definida en 7.2. 

7.4 Rerankers open-source y señales multimodales. 

Para aumentar la precisión en top-N sin comprometer latencia, se incorporarán cross-

encoders ligeros como rerankers cuando el presupuesto lo permita. Complementariamente, se 

reforzará el tie-breaker CLIP I→T con minado de hard negatives, incrementando la separación 

de pares y el Recall@K multimodal. Los efectos de estas adiciones se medirán con MRR y 

métricas cruzadas, realimentando los pesos de fusión de 7.3. 
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7.5 RAG-to-SQL con guardrails productivos. 

Una vez robustecida la recuperación, se fortalecerá la capa RAG-to-SQL con guardrails 

de producción: plantillas y schema linking por vertical, restricciones de sintaxis y estimación de 

costos previa a la ejecución, más validadores del result set. Ante fallos SQL, se activará 

retroalimentación al retriever (reforzar filtros/facetas) para cerrar el ciclo. Esta línea atiende el 

reto de interacción semántica-estructurada identificado a lo largo de la tesis. 

7.6 Portabilidad y referencia para PYMEs. 

Para facilitar adopción en contextos heterogéneos, se publicarán scripts y manifiestos 

agnósticos a proveedor, preservando PostgreSQL/pgvector como núcleo. La arquitectura de 

referencia open-source se empaquetará con cookbooks por tamaño de catálogo y guías de 

quick-start, de modo que equipos pequeños puedan replicar el sistema con mínima fricción. 

7.7 Ampliaciones de dominio y datos. 

En paralelo a la industrialización, se ampliará la cobertura semántica con 

normalización de taxonomías y diccionarios de sinónimos por país/tienda. Se consolidará la 

ingesta incremental con control de calidad (S3 → Parquet → Postgres) y validaciones en el 

pipeline reproducible existente, lo que debería reflejarse en mejoras de Label Consistency@K e 

Hybrid Recall en contextos reales. 

7.8 Patrón de sistema “empresa-like”, versión PYME. 

Finalmente, se consolidará el patrón moderno de búsqueda —candidatos híbridos → 

fusión → reranking → multimodal → RAG— como paquete reutilizable y documentado. Este 

empaquetado, nutrido por las prácticas de 7.1–7.7, busca ofrecer a las PYMEs un camino claro 

y económicamente viable desde el prototipo hasta la operación sostenida. 
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