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RESUMEN

Este proyecto de investigacion presenta el desarrollo de un modelo predictivo enfocado en
el volumen neto de los desvios generacion/demanda del sistema eléctrico de Espafa, con
el objetivo de minimizar penalizaciones mediante la participacién correcta en dos mercados:
el continuo y el intradia. Cada mercado cuenta con un horizonte de prediccién especifico
adaptado a sus caracteristicas operativas.

El propdsito es proveer a las comercializadoras de energia una herramienta que ayude a
minimizar penalizaciones econdmicas relacionadas con los desequilibrios de sus compras.

Para ello se implementaron dos enfoques:

1. Modelo de prediccion horaria: Se incorporaron variables exégenas (precio spot, pro-
duccion edlica, temperatura, velocidad del viento, insolacién, dias festivos ponderados)
y desvios con un rezago de una hora. Este disefio fue evaluado mediante los algoritmos
CatBoost y Prophet.

2. Modelo multi-salida: Con las mismas variables exdégenas y una transformacién de
la variable objetivo para crear un dataframe con horizonte de 24 horas. La precision
se valor6 cuantitativamente (RMSE) y cualitativamente (acierto de tendencia mediante
matriz de confusion). Cabe destacar que fue evaluado con el modelo Catboost.

Los resultados muestran que, mientras el modelo de mercado continuo ofrece un rendimiento
comparable al uso exclusivo de desvios rezagados, el enfoque multi-salida consigue un aho-
rro medio del 5 % en costes para para una comercializadora simulada, frente a estrategias
sin modelado. El proyecto incluy6 ingesta de datos publicos (ESIOS, AEMET, web scraping),
analisis exploratorio, seleccién de variables y modelado estadistico y de machine learning en
Python.

Palabras clave: modelo predictivo, mercado de desvios, red eléctrica, machine learning, Cat-
Boost, Prophet, web scraping.
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ABSTRACT

This research project presents the development of a predictive model focused on the net
volume of generation/demand deviations in the Spanish electrical system, aiming to minimize
losses through correct participation in two markets: the continuous and the intraday. Each
market has a specific forecasting horizon adapted to its operational characteristics.

The objective is to provide energy marketers with a tool that helps minimize economic penal-
ties related to the imbalances in their purchases and, consequently, contribute to the overall
stability of the electrical system.

Two approaches were implemented:

1. Hourly prediction model: Exogenous variables were incorporated (spot price, wind
power production, temperature, wind speed, solar radiation, weighted holidays) as well
as deviations with a one-hour lag. This design was evaluated using the CatBoost and
Prophet algorithms.

2. Multi-output model: Using the same exogenous variables and a transformation of the
target variable to create a dataframe with a 24-hour forecasting horizon. Accuracy was
assessed quantitatively (RMSE) and qualitatively (trend accuracy using a confusion ma-
trix). It is worth noting that this model was evaluated using CatBoost.

The results show that, while the continuous market model offers performance comparable
to the exclusive use of lagged deviations, the multi-output approach achieves an average
cost savings of 5% for energy marketers compared to non-modeling strategies. The project
included the ingestion of public data (ESIOS, AEMET, web scraping), exploratory analysis,
variable selection, and statistical and machine learning modeling in Python.

Keywords: predictive model, deviation market, power grid, machine learning, CatBoost, Prophet,
web scraping.
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Capitulo 1. RESUMEN DEL PROYECTO

1.1 Contexto y justificacion

En 2024, el coste de los servicios de ajuste en Espafia alcanzo los 2 668 millones de euros,
un 7,5 % superior al del afio anterior, lo que supone una carga significativa para los agentes
del mercado (Red Eléctrica de Espana, 2024).

Por otra parte, segun Red Eléctrica de Espafna (2025, 2024), el incremento en la produccién
de energias renovables ha aumentado la variabilidad en la programacion energética y ha ele-
vado el volumen (y coste) de los desvios. En 2024, las renovables representaron el 56,8 %
del mix eléctrico (Red Eléctrica de Espana, 2025) y el coste de los servicios de ajuste (indica-
dor de penalizaciones por desvios) alcanzé los 2668 M€, un 7,5 % mas que el afio anterior
(Red Eléctrica de Espana, 2024).

Por lo tanto, generar un modelo que permita predecir los desvios futuros ayudaria a las co-
mercializadoras a optimizar sus operaciones.

1.2 Planteamiento del problema

En el mercado eléctrico de Espana existen multiples participantes que hacen posible su fun-
cionamiento. Uno de esos agentes son las comercializadoras, las cuales se encargan de
comprar la electricidad en el mercado y venderla a los consumidores (hogares y negocios).
No obstante, cuando la cantidad de electricidad comprada resulta muy diferente de la consu-
mida, se genera un desequilibrio en el sistema. Dicho desequilibrio se penaliza; es decir, todo
agente que contribuya a la discrepancia entre lo consumido y lo programado sera penalizado
por el mercado para estabilizar el sistema (Conde Buezas, 2016).

Por lo tanto, predecir las desviaciones es fundamental para evitar pérdidas considerables de
las partes involucradas. No obstante, las predicciones en este ambito resultan un desafio
técnico, dado que dependen de multiples variables exdgenas. Es importante resaltar que
algunas son mas dificiles de obtener que otras (Filgueira Fernandez, 2024).

Por otra parte, capturar las relaciones entre las variables exdégenas y la variable dependiente
(volumen neto de los desvios) puede ser complejo, ya que dichas relaciones pueden ser
no lineales. Por lo tanto, se requiere el uso de algoritmos de machine learning y modelos
estadisticos avanzados (Lopez Garcia, 2016).

1.3 Objetivos del proyecto

En esta investigacion se busca comprender la importancia de prever el desvio del sistema de
forma que se adecue la compra de energia a las distribuidoras, utilizando modelos estadisti-
cos y de machine learning. Para ello, se deben extraer, analizar y modelar distintas variables
independientes, con el proposito de explicar su relevancia en el fendmeno de estudio y mejo-
rar la precision de los pronésticos.
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1.4 Resultados obtenidos

Esta investigacion destacé la importancia de realizar multiples analisis exploratorios para
identificar patrones en las variables. Al tratarse de un fenédmeno temporal, la descomposicién
de la fecha y hora permitié configurar componentes como afio, mes y hora, que aportaron
significativamente a la precisién del modelo. Ademas, la realizaciéon de un andlisis compara-
tivo (benchmark) entre distintos modelos fue crucial para obtener predicciones robustas sin
caer en sobreajuste. En términos cuantitativos, el modelo CatBoost obtuvo el mejor ajuste
con un RMSE = 398.5 MWh y una precisién en la direccién del desvio (accuracy de signo)
del 84.4 %, frente al baseline (dummy 1h) que presenté un RMSE de 424.3 MWh. Prophet
alcanz6 un RMSE = 408.7 MWh (accuracy 84.2 %) y el ensamblado hibrido consiguié un RM-
SE intermedio ~ 402.2 MWh (accuracy 84.37 %). El modelo multisalida, Gtil para pronosticar
24 h de forma directa, mostré6 un RMSE promedio ~ 952.0 MWh y una accuracy global del
66 %, indicando pérdida de precisién en horizontes largos. Finalmente, la simulaciéon econ6-
mica basada en las predicciones revel6 un ahorro absoluto de 104 889.48 EUR, equivalente
a una reduccion del 4.86 % en costes de penalizacién frente a una estrategia de compra fija.

1.5 Estructura de la memoria

El presente documento incluye un breve resumen de la investigacion, explicando sus compo-
nentes y el motivo que genero este trabajo. Ademas, se presentan cada uno de los objetivos
y una descripcion detallada de como se alcanzaron. Por Ultimo, se exponen los resultados
obtenidos, las conclusiones y las posibles mejoras.

10
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Capitulo 2. ANTECEDENTES / ESTADO DEL AR-
TE

2.1 Estado del arte

En esta seccidn se exponen una serie de trabajos que anteceden este proyecto. Dichas in-
vestigaciones proporcionan una visién general de la problematica planteada en este trabajo y
explican los avances logrados hasta la fecha. Ademas, se puede evidenciar las oportunidades
de mejora y los beneficios que aporta esta investigacion.

Cabe destacar que, para lograr este andlisis del estado del arte, se revisaron una serie de
fuentes oficiales como ScienceDirect y MDPI, aplicando palabras clave como forecasting,
machine learning y electricity.

2.1.1. Modelos avanzados de machine learning y enfoques hibridos

Al Mamun et al. (2017) describen en su investigacién la importancia de elegir cuidadosamente
los diferentes factores que pueden afectar la precision de un modelo de prediccion de carga
eléctrica, como lo son el tiempo, el clima y la economia. Por otra parte, mencionan que el
uso de modelos hibridos como el SVM-BFGSA, entre otros, puede mejorar la precisiéon de las
predicciones al integrar la fuerza de diferentes técnicas.

En adicién, se comenta que las diferentes métricas de evaluacién como RMSE y el MAPE
son fundamentales para determinar el modelo mas adecuado para el fenémeno de estudio.
Ademas, el uso de diferentes modelos segun el horizonte temporal requerido permite adaptar
las técnicas a las necesidades especificas de cada sistema eléctrico.

En conclusién, el analisis de las variables exdgenas y el uso de algoritmos robustos que
permitan capturar relaciones no lineales puede ser de gran utilidad en esta investigacién. De
acuerdo con Al Mamun et al. (2017), los modelos de machine learning como el SVM-BFGSA
mostraron una reduccion del 9.63% en el MAPE en comparacién con el modelo ARIMA.
Por lo tanto, es pertinente considerar aplicar técnicas avanzadas como el algoritmo CatBoost
para la prediccién del volumen neto de los desvios, ademas, una combinacién de modelos de
machine learning y estadisticos podria generar un modelo aln mas eficiente y robusto, como
sugieren los autores.

2.1.2. Modelos estadisticos clasicos

En las zonas insulares de Espafia, como las Islas Canarias y Baleares, Caro y Juan (2020)
desarrollaron un modelo de serie temporal ARIMAX para realizar pronésticos horarios de
la demanda de energia eletrica (MW) con un horizonte de un dia. Dicho modelo considera
factores como la temperatura y los dias festivos, con el propdsito de adaptarse a cada sistema
insular.

11
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En su investigacion, los autores compararon los resultados con un software de prondsticos
utilizado por la Red Eléctrica de Espafa (REE). Por otra parte, emplearon métricas como el
error porcentual absoluto medio (MAPE) para evaluar la precision de los modelos y la prueba
de Diebold-Mariano para comparar la precision de los modelos desarrollados con el software
de referencia utilizado por REE.

Como senalan Caro y Juan (2020) en sus conclusiones, los modelos desarrollados son mas
precisos que el software de referencia, con mejoras considerables en las Islas Baleares. La
hora y la temperatura tienen un efecto notable en dichas mejoras; es decir, considerar este
tipo de variables en la investigacion puede ser beneficioso para la precisién de los modelos.

En conclusién, dicho proyecto resulta beneficioso para esta investigacion, dado que indica
que los modelos estadisticos pueden generar buenos pronésticos en el sector energético v,
ademas, si utilizamos las variables exégenas correctas, se puede aportar considerablemente
al sector y a todas las partes involucradas.

2.1.3. Modelos estadisticos avanzados

Sanz Murioz (2023) estudia la prediccién de precios en el mercado diario de la electricidad de
Esparia durante el periodo 2018-2019 mediante la configuraciéon y comparacion de un con-
junto de modelos, entre ellos el modelo Prophet en versiones univariantes y multivariantes.

El modelo Prophet en su versién multivariante incorporé variables exdégenas como la deman-
da P48, la generacion edlica P48 y el dia de la semana, logrando el mejor MAE de todos
los modelos (2,652 €/MWh). Esto demuestra la importancia de integrar variables exégenas
en un modelo de series temporales para mejorar la precisién del mismo, al capturar de una
mejor manera la estacionalidad y otros patrones.

Se puede concluir que el modelo Prophet resulta de gran utilidad para predecir valores re-
lacionados con el sector energético, donde se pueden encontrar patrones cambiantes en la
estacionalidad y es frecuente la presencia de valores atipicos.

2.1.4. Modelos de machine learning multi-salida

Miele, Ludwig y Corsini (2023) comentan en su investigacion que la prediccion multi-horizonte
es de vital importancia porque permite anticipar varias horas futuras de una misma sefal,
apoyando de esa manera decisiones de operacion y compra. Por consiguiente, los autores
estudian este problema en el contexto de la potencia edlica a nivel de turbina, sefalando que
la variabilidad del viento y la necesidad de precisién exigen pronosticos de muchas horas
adelante para planificar mantenimiento, despacho y coordinacién con otros recursos.

La variable objetivo es la potencia activa generada por cada turbina, con una periodicidad
horaria, y se busca poder predecir las siguientes 90 horas desde cada momento de partida.
Para ello, se elabora un conjunto de datos donde cada registro contiene el historial reciente
de la turbina, junto con las variables de salida correspondientes a cada intervalo de tiempo
con horizonte de 90 horas (Miele, Ludwig & Corsini, 2023).
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Cabe destacar que el conjunto de variables explicativas proviene de SCADA (Supervisory
Control And Data Acquisition) y NWP (Numerical Weather Prediction). SCADA proporciona
datos internos del equipo, como potencia instantanea, temperaturas internas y externas, vi-
braciones, entre otros indicadores de estado y rendimiento. Por otra parte, NWP proporciona
valores como velocidad y direccién del viento, temperatura, presion y humedad en distintos
niveles de la atmdsfera y ubicaciones geograficas (Miele, Ludwig & Corsini, 2023).

El modelo utilizado para llevar a cabo esta investigacion fue una red neuronal multimodal
espaciotemporal basada en LSTM, utilizando métricas para evaluar los pronosticos, como el
RMSE, el MAE y un skill score que mide la mejora porcentual frente a modelos base, como
la regresion lineal. Los resultados obtenidos por Miele, Ludwig y Corsini (2023) indican que el
error crece con el horizonte y reportan un skill score medio cercano al 25 % sobre el modelo
base.

En conclusién, esta investigacion deja un precedente en la importancia de usar modelos
multi-salida en combinacion con variables exdgenas, sefialando no solo su eficacia, sino la
metodologia para llevar a cabo este tipo de proyectos, desde la transformacion de los datos
hasta la forma de evaluar la precision del modelo.

2.2 Contexto y justificacion

En el sistema eléctrico espanol, las comercializadoras son las encargadas de comprar ener-
gia a las empresas generadoras en los mercados diarios e intradiarios, con el propésito de
suministrarles a los consumidores, como los hogares y empresas, energia de manera cons-
tante segun sus necesidades. Cuando la energia consumida difiere de lo programado, se
genera una discrepancia entre la generacién y la demanda. Dicha diferencia genera un des-
equilibrio en el sistema eléctrico (CNMC, 2019).

Por lo tanto, la entidad responsable de mantener el sistema eléctrico en 6ptimas condiciones
(REE) debe corregir mediante penalizaciones en el mercado de desvios. Dichas penaliza-
ciones generan pérdidas econémicas considerables a las comercializadoras y a todo agente
responsable que contribuya con el desequilibrio.

Es importante resaltar que, en 2024, el coste de los servicios de ajuste en Espafa alcanz6
los 2 668 millones de euros, un 7,5 % superior al del afio anterior, lo que supone una carga
significativa para los agentes del mercado (Red Eléctrica de Espana, 2024).

Ademas, segun Red Eléctrica de Espana (2024, 2025), el incremento en la produccién de
energias renovables ha aumentado la variabilidad en la programacion energética y ha elevado
el volumen (y coste) de los desvios. En 2024, las renovables representaron el 56,8 % del mix
eléctrico (Red Eléctrica de Espana, 2025).

En conclusién, el desarrollo de un modelo predictivo capaz de pronosticar el volumen neto
de los desvios es de vital importancia para todos los agentes involucrados, debido a que,
con esa informacién, seran capaces de evitar penalizaciones en el mercado de desvios v,
como consecuencia, se producira un equilibrio duradero en el sistema eléctrico, lo cual podria
generar mejores precios para los consumidores y un servicio de mejor calidad.
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2.3 Planteamiento del problema

Se ha evidenciado que el sistema eléctrico espafiol estd compuesto por mdltiples agentes,
desde los que generan la energia hasta los consumidores. Uno de ellos son las comercializa-
doras, agentes encargados de adquirir energia en el mercado energético (diario, intradiario
y de desvios) para poder suministrarla de forma eficiente a los diferentes tipos de consu-
midores. En este sistema, cuando las comercializadoras adquieren un volumen de energia
diferente al realmente consumido, se genera un desvio que pone en desequilibrio todo el sis-
tema. Por lo tanto, el agente encargado debe corregir dicho desequilibrio, y el método para
hacerlo es a través del mercado de desvios, donde los distintos agentes que presentaron
desviaciones pueden comprar o vender segun el caso, a un precio desfavorable para ellos
debido a una estimacion incorrecta de sus previsiones (CNMC, 2019).

Es importante tener en cuenta que un sistema eléctrico en éptimas condiciones genera bene-
ficios para todos los agentes involucrados, lo cual no solo favorece a las comercializadoras,
sino a todo el sector, incluidos los consumidores.

No obstante, a pesar de existir una cantidad considerable de investigaciones relacionadas
con la demanda y la generacion de energia por separado, son escasos los proyectos que
especificamente evallan el volumen neto de los desvios (generacion/demanda). Esto puede
evidenciarse en la investigacion de Caro y Juan (2020), donde, al desarrollar un modelo ARI-
MAX, lograron pronosticar la demanda de los sistemas insulares espafnoles con un RMSE
satisfactorio. Ademas, Al Mamun et al. (2017) evaluaron un conjunto de técnicas predictivas
individuales e hibridas, obteniendo resultados competitivos, pero ninguno de estos proyectos
se enfocd en el pronéstico del volumen neto de los desvios.

En trabajos de investigacién recientes, Sanz Mufioz (2023) ejecuté el modelo Prophet, incor-
porando variables exégenas como la demanda P48, la generacion edlica P48 y el dia de la
semana, con el proposito de predecir el precio del mercado diario espanol, obteniendo un
MAE considerablemente bajo. Esto demuestra la utilidad de dicho modelo y su capacidad
predictiva al incorporar regresores externos. Sin embargo, este proyecto tampoco evalué el
volumen de los desvios, sino el precio de la energia.

Por lo tanto, en esta investigacién se plantea desarrollar un modelo predictivo capaz de apor-
tar una solucién a esta problematica, permitiendo que las comercializadoras puedan mitigar
sus pérdidas y que el sistema en general alcance intervalos de equilibrio mas prolongados.
Para ello, se evaluaran dos modelos con algoritmos completamente distintos, pero igual de
eficaces. Dichos modelos se entrenaran y evaluaran con un histérico de datos del volumen
neto de los desvios desde 2015 hasta 2024.

2.4 Marco tedrico
2.4.1. Sistema eléctrico
El sistema eléctrico se puede comprender como el conjunto de infraestructuras y procesos

que garantizan la generacion, transporte, distribuciéon y suministro de electricidad, con el pro-
poésito de satisfacer la demanda de energia en todo momento (Red Eléctrica de Espania, s.f.).
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Cabe destacar que en Espafia coexisten varios subsistemas, tales como: Peninsular, Balea-
res, Canarias, Ceuta y Melilla. Sin embargo, el mas grande es el subsistema peninsular, el
cual esta interconectado con paises vecinos y registra una generacion de energia que su-
perd los 248 478 GWh en 2024 (Red Eléctrica de Espana, 2024). Por consiguiente, el siste-
ma requiere la interaccidon de mdltiples agentes y mercados para mantener el equilibrio entre
generacion y demanda de forma segura y eficiente (Red Eléctrica de Espafa, s.f.).

2.4.2. Agentes del sistema eléctrico

(Fundacion Endesa, s.f.) identifica los siquientes agentes principales del sistema:

. Generadores: instalan, operan y mantienen centrales de generacién eléctrica (térmi-
cas, hidraulicas, renovables, etc.), y participan informando sus ofertas de cantidad y
precio al mercado.

. Productores en régimen especial: tipologia de generadores sujetos a tratamientos
econdmicos o regulatorios especificos por eficiencia o impacto ambiental.

. Transportistas: gestionan la red de transporte de alta tension, trasladando la ener-
gia desde los centros de generacién hasta las redes de distribucion, garantizando la
capacidad y seguridad de la transmision.

. Distribuidores: operan y mantienen la red de media y baja tensién, llevando la electri-
cidad hasta el punto de consumo y gestionando infraestructuras de distribucion.

. Comercializadores: empresas que adquieren electricidad en los mercados mayoristas
y la venden a consumidores finales, asumiendo la contratacion y gestiéon de precios.

. Consumidores calificados: usuarios con un volumen de consumo que les otorga par-
ticipacion directa en el mercado mayorista.

. Operador del sistema: en Espafna, Red Eléctrica de Espana (REE) actia como ope-
rador del sistema de transporte (TSO), responsable de la gestidén técnica del sistema,
coordinacién continua de la red y mantenimiento del equilibrio entre generacién y de-
manda (Fundacién Endesa, s.f.; Red Eléctrica de Espana, s.f.).

. Operador del mercado: gestiona la casacién de ofertas y demandas para determinar
los precios horarios; en el mercado diario OMIE (Operador del Mercado Ibérico de
Energia) cumple esta funcién.

. Reguladores: la Administracién del Estado y la Comision Nacional de los Mercados

y la Competencia (CNMC) establecen y supervisan marcos regulatorios, metodologias
de funcionamiento de mercados y liquidaciones (CNMC, 2019).
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2.4.3. Mercados del sistema eléctrico

Los mercados eletricos se organizan en diferentes tipos para permitir la compra y venta de
energia en distintos horizontes temporales y de esa forma gestionar el balance en tiempo real
(CNMC, s.f.; Fundacion Endesa, s.f.).

. Mercados a plazo: contratos bilaterales o subastas a futuro para cubrir volimenes con
antelacion.

. Mercado diario: casacion de ofertas de compra y venta para cada una de las 24 horas
del dia siguiente. Todas las unidades de generacion disponibles participan obligato-
riamente, y el precio resultante es marginalista, beneficiando la eficiencia del sistema
(Fundacion Endesa, s.f.; Endesa, 2025).

. Mercado intradiario: permite ajustes tras el cierre del mercado diario, organizandose
en varias sesiones donde generadores y comercializadoras corrigen posiciones segun
nueva informaciéon de demanda o disponibilidad.

. Mercado continuo: es un segmento dentro del mercado intradiario en el cual se per-
mite la negociacion en tiempo casi real, mediante un sistema de casacion continua, a
diferencia del mercado diario y de las sesiones intradiarias que funcionan por subas-
ta. En este mercado, los agentes pueden modificar sus previsiones de generacioén o
demanda y ajustar sus posiciones comerciales conforme se acercan a la hora real de
entrega, permitiendo una mayor flexibilidad operativa (OMIE, s.f.).

. Mercados de servicios complementarios o de balance: incluyen mecanismos para
resolver desequilibrios en tiempo real o casi real. Dentro de estos esta el llamado “mer-
cado de desvios” o “servicios de ajuste”, donde se compensan las diferencias entre la
energia programada y la realmente inyectada o consumida para mantener el equilibrio
técnico del sistema (CNMC, 2019; Fundacion Endesa, s.f.).

2.4.4. Equilibrio técnico y estabilidad del sistema eléctrico

“El equilibrio instantaneo entre la electricidad generada y la demandada es imprescindible,
ya que cualquier diferencia podria comprometer la estabilidad de la red. Para garantizar este
balance, el operador del sistema (REE) monitoriza en tiempo real los flujos eléctricos, acti-
va reservas y utiliza mecanismos de ajuste para absorber desviaciones” (Red Eléctrica de
Espana, s.f.).

2.4.5. Servicios de ajuste o servicios complementarios

"Los servicios de ajuste o complementarios permiten al operador del sistema mantener la
calidad del suministro eléctrico y compensar rapidamente desviaciones imprevistas. Entre
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ellos se encuentran la regulacion secundaria (respuesta en segundos), la terciaria (respuesta
en minutos) y los servicios de gestion de restricciones técnicas"(REE, s.f.).

2.4.6. Responsabilidad del equilibrio

"La normativa espafola y europea establece que todos los agentes participantes en el siste-
ma eléctrico son responsables de mantener su propio equilibrio entre inyecciones y extrac-
ciones de energia, debiendo asumir las consecuencias economicas de los desvios"(CNMC,
2019).

2.4.7. Desvios del sistema eléctrico

El desvio en el sistema eléctrico se puede definir como la diferencia entre la energia medida y
la energia programada en el mercado. Desde la perspectiva del agente generador, el calculo
de los desvios es igual a la energia medida en barras de central menos la energia programada
en el horario de liquidacion (MagnusCMD, s.f.).

Desvio = Energia medida — Energia programada

Por otra parte, se puede mencionar que los desvios generan obligaciones de pago o de-
rechos de cobro con el operador del sistema (REE), independientemente del operador de
mercado (OMIE), y se liquidan mediante mecanismos especificos. Cabe destacar que la ges-
tién de desvios es critica porque las penalizaciones o recompensas afectan directamente la
rentabilidad de generadores y comercializadoras. En adicién, contribuyen a la estabilidad del
sistema eléctrico al incentivar comportamientos que reduzcan desequilibrios (MagnusCMD,
s.f).

2.4.8. Liquidacion de desvios y precio de desvio

La liquidacion de los desvios esta regulada por el Procedimiento Operativo PO-14.4 de Red
Eléctrica de Espafia, en el cual los precios de desvio se calculan de forma marginalista para
cada periodo de liquidacion (Red Eléctrica de Espana, s.f.). En detalle:

» Desvios a subir: si un agente inyecta menos energia de la programada, paga la diferencia
al precio marginal de “desvios a subir” publicado por el operador del sistema (Red Eléctrica
de Espana, s.f.).

» Desvios a bajar: si inyecta mas energia de la programada, recibe la diferencia al precio
marginal de “desvios a bajar” (Red Eléctrica de Espana, s.f.).

Este mecanismo tiene en consideracion la situacion del sistema en cada momento y el volu-
men concreto desviado. Por lo tanto, la penalizacién o compensacién varia segun el contexto
operativo y no es uniforme para todos los agentes (Red Eléctrica de Espania, s.f.).
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2.4.9. Fundamentos de series temporales

La prediccidén de los desvios de la red eléctrica se encuentra dentro del andlisis de series
temporales, donde es pertinente comprender la estructura de dichas series. Hyndman, R.
J., & Athanasopoulos, G. (2018) comentan que la estructura se conforma por la tendencia,
estacionalidad y ruido. Ademas, entender las propiedades, como si la serie es estacionaria,
presenta autocorrelacion y si se distribuye normal.

Para poder determinar las propiedades antes mencionadas, se pueden aplicar las siguientes
pruebas:

. Pruebas de estacionariedad: se emplea, entre otros, el test de Dickey-Fuller aumen-
tado (ADF) para evaluar si la serie tiene raiz unitaria (Dickey & Fuller, 1979). Una serie
no estacionaria puede requerir diferenciacién o transformaciones antes de modelar.

. Autocorrelacion y correlacidon parcial: el analisis de ACF/PACF y pruebas como
Ljung-Box ayudan a identificar dependencia temporal y retardos relevantes (Box, Jen-
kins, Reinsel, & Ljung, 2015).

. Normalidad de residuos o de variables: tests como Shapiro-Wilk o Kolmogérov-
Smirnov informan si la distribucién de errores o de la variable se ajusta a normalidad,
aunque muchos métodos de machine learning no exigen normalidad estricta, conocer
la distribucién ayuda a entender riesgos extremos (Shapiro & Wilk, 1965).

2.4.10. Modelo Prophet

Prophet es un modelo estadistico, el cual se basa en un modelo aditivo para series tempora-
les, descomponiendo la observacién en componentes de tendencia, estacionalidad, efectos
de dias festivos y ruido (Taylor & Letham, 2018):

y(t) = g(t) + s(t) + h(t) + &

donde:

* ¢(t) es la funcién de tendencia,

* s(t) modela la estacionalidad,

* h(t) representa los efectos de dias festivos o eventos,

* £, es el término de error (ruido), asumido con media aproximadamente cero.

1. Tendencia: g(t)

Prophet admite principalmente dos tipos de tendencia: lineal con puntos de cambio (piecewise
linear) o logistica. En el caso lineal con cambios de pendiente en tiempos {t.}, se define:
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gt) = [ k+>_da;(t) | (t—to)+ [ m+D_ja;(t)
j=1 j=1

donde:

* k es la pendiente inicial,
* m es la interseccion inicial,
. {150}35:1 son los tiempos de cambio (changepoints),
at) = {1, sit>tcj’
0, sit <t
* 0; es el cambio de pendiente en t.;,
+ Para mantener la continuidad de ¢(t), se ajusta el intercepto con v; = —t.;0;,
* 1o es un punto de referencia temporal (por ejemplo, el tiempo inicial).

La estimacion de ¢; se realiza con regularizacion bayesiana (Bayesian prior) para evitar un
exceso de cambios de pendiente y sobreajuste (Taylor & Letham, 2018).

En la version logistica, la tendencia se define como:

B c
1+ exp(—k(t —m))

g9(t)

o en una forma analoga con changepoints.

2. Estacionalidad: s(t)

La estacionalidad se modela mediante series de Fourier para capturar patrones periddicos
(diarios, semanales, anuales). Por ejemplo, para una estacionalidad de periodo P, se utiliza
la siguiente representacion:

o= 3 [ (5) st (5]

n=1
donde:

» P es el periodo de la estacionalidad (por ejemplo, P = 24 para estacionalidad diaria u
P = 7 para estacionalidad semanal),

* N es el numero de términos (orden) de la serie de Fourier, que controla el grado de
complejidad capturado,

* a, Y b, son los coeficientes de la serie, estimados junto con el resto de parametros del
modelo,

+ La estimacion puede realizarse minimizando la funcién de pérdida o mediante inferencia
bayesiana aproximada (Taylor & Letham, 2018).
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3. Efectos de dias festivos: /(t)

Los efectos de dias festivos se incorporan como regresores binarios o mediante ventanas
de influencia. Si D es el conjunto de fechas festivas, se define para cada festivo d € D un
indicador:

Da(t) 1, sit coincide o esta en una ventana alrededor de d
d =
0, enotro caso

Entonces, el componente de festivos se modela como:

h(t) = 3 Ba Dalt)

deD

donde:

* D,(t) es el indicador binario para el festivo d,

» (4 es el coeficiente que cuantifica el impacto del festivo d sobre la serie,

 Estos regresores también pueden representar eventos especiales o campanas que al-
teren el comportamiento normal de la serie.

2.4.11. Modelo CatBoost

CatBoost es un algoritmo de gradient boosting sobre arboles de decision que introduce inno-
vaciones para manejar variables categoricas y reducir el sesgo en el calculo de gradientes
(Prokhorenkova et al., 2018). A continuacién se exponen los fundamentos matematicos del
boosting y las particularidades de CatBoost.

1. Fundamentos matematicos del boosting

Gradient Boosting construye un modelo de forma aditiva, ajustando cada nuevo arbol a los
residuos del modelo anterior (Friedman, 2001). Formalmente, dada una funcién de pérdida
L, el procedimiento es el siguiente:

1. Se inicia con una prediccion constante:

N
Fy(z) = argmin } _ L(y:,7)

i=1

2. Para cada iteracionm =1,2,..., M:

+ Se calculan los pseudo-residuos como el gradiente negativo de la funcién de pér-

dida:
Jm) __ 0Ly, Fla1))

F=Fpn 1
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« Se ajusta un nuevo arbol de regresion h,,(x) para predecir los pseudo-residuos
(m)

» Se actualiza el modelo:
Fo(z) = Fpo1(z) + 1 hin(2)

donde n € (0, 1] es la tasa de aprendizaje, que controla cuanto contribuye cada
nuevo arbol.

En el caso particular de pérdida cuadratica:
1 2

los pseudo-residuos son simplemente:

o) =y = Fppea ()

r
Para funciones de pérdida genéricas (como log-loss para clasificacion), se utilizan los gra-
dientes y en algunos algoritmos como XGBoost también los hessianos (segunda derivada)
para construir los splits de los arboles (Chen & Guestrin, 2016).

2. Particularidades de CatBoost

. Ordered Boosting: evita el target leakage al tratar variables categoéricas. En lugar de
usar toda la muestra para calcular estadisticas como medias condicionales, CatBoost
utiliza permutaciones internas y estima las estadisticas en orden aleatorio. Esto reduce
el sesgo en los gradientes durante el entrenamiento y mejora la generalizacién del
modelo (Prokhorenkova et al., 2018).

. Arboles simétricos: cada arbol es construido de forma que todos los splits a una
misma profundidad usan la misma caracteristica. Esta estructura acelera la prediccion,
facilita la paralelizacion y estabiliza el modelo al reducir la varianza.

. Regularizacion interna: el modelo incluye hiperparametros como depth (profundidad
del arbol), learning_rate (tasa de aprendizaje) y 12_leaf_reg (equivalente al pa-
rametro \ en la regularizacion de las hojas), que ayudan a controlar el sobreajuste y
mejorar el rendimiento fuera de muestra.

. Manejo nativo de variables categoricas: CatBoost procesa internamente las varia-
bles categéricas mediante codificaciones basadas en estadisticas relativas a la varia-
ble objetivo, por lo que no es necesario aplicar una codificacién manual tipo one hot
encoding que aumente mucho la dimensionalidad del conjunto de datos. Esto simplifica
el preprocesado, reduce el riesgo de errores por transformacion y permite aprovechar
la informacién de las categorias de forma mas directa y eficiente (Prokhorenkova et al.,
2018).
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2.4.12. Modelos hibridos y combinacion de pronésticos

La combinacién de pronédsticos busca mejorar precisién al aprovechar fortalezas complemen-
tarias de modelos distintos (Clemen, 1989).Se puede mencionar que al combinar Prophet
(fuerte en capturar tendencia/estacionalidad) y CatBoost (fuerte en no linealidades y exége-
nas) mediante ponderacion basada en errores historicos, se puede reducir sesgos de cada
modelo y mejorar la precisién de los prondsticos.

Métodos de combinacién: ponderacién lineal de predicciones:

U= leProphet + wa¥catBoost

con pesos w; determinados por inversa de RMSE en validacion o mediante optimizacion (e.g.,
minimos cuadrados).

Ventajas:

* puede mejorar robustez y generalizacion;
» mitiga fallos ciclicos de uno u otro modelo en ciertas condiciones.

2.4.13. Enfoque multi-salida con CatBoost

Para predecir 24 horas futuras de desvios, se pueden usar:
. Modelos independientes: un CatBoost por cada horizonte h, minimizando
> Liirns Fulw:).
i

Esto ignora correlaciones entre horas.

. Modelo “horizonte como feature”: reformular el problema como un dataset “aplana-
do”: cada fila es un par (z;, h) y objetivo y; ;.. Entonces se entrena un Gnico modelo
F(x, h) que capta informacién compartida entre horizontes (Hyndman & Athanasopou-
los, 2018).

. Multi-output directo: si la libreria o un wrapper lo permite, entrenar un solo CatBoost

que devuelva un vector de 24 predicciones simultaneas, aprovechando correlaciones
entre outputs.
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2.4.14. Métricas de error en forecasting

Root Mean Squared Error (RMSE) mide la raiz cuadrada del promedio de los errores al
cuadrado entre valores reales y; y predicciones g;:

1< A
RMSE = ;Z(Zﬁ—lﬁ)z
i=1

Es sensible a errores grandes debido al cuadrado de la desviacidn y se expresa en las mismas
unidades de la variable de interés (Hyndman & Athanasopoulos, 2018).

Symmetric Mean Absolute Percentage Error (SMAPE) valora el error porcentual simétrico
y mitiga el sesgo cerca de cero:

1 n s
smapg = 2007 g~ v =il
L 3 (lwil +173])

Penaliza por igual sobre- y subestimaciones y resulta util cuando los valores reales pueden
ser cercanos a cero (Hyndman & Athanasopoulos, 2018).

2.4.15. Meétricas de clasificacion de tendencia

Para evaluar la capacidad del modelo de predecir la direccién del desvio (positivo/negativo),
se utiliza la matriz de confusion:

\ Prediccién Positiva Predicciéon Negativa
Real Positiva | Verdaderos Positivos (VP) Falsos Negativos (FN)
Real Negativa Falsos Positivos (FP) Verdaderos Negativos (VN)

De ella se derivan numerosas métricas de rendimiento (precision, exhaustividad, F1, etc.)
(Hastie et al., 2009).

Precision se define como la proporcion de predicciones correctas (tanto positivas como ne-
gativas) sobre el total de observaciones:

VP + VN

Precision — ,
reCIsion = P ¥ FP + FN + VN

Aunque intuitiva, puede resultar engafiosa en casos de clases muy desbalanceadas (Hastie
et al., 2009).

23



Prediccién del volumen neto de los desvios E Universidad
Edgar Romero Depablos Europea

Capitulo 3. OBJETIVOS

3.1 Objetivos generales

El objetivo general del presente Trabajo Fin de Master consiste en desarrollar e implementar
un modelo predictivo del volumen neto de los desvios generacién/demanda en la red eléc-
trica peninsular espafnola, mediante la comparacién de un algoritmo de machine learning
(CatBoost) y un modelo de series temporales (Prophet) con variables exégenas, con el fin de
optimizar la estrategia de compra y venta en el mercado intradiario y minimizar las penaliza-
ciones econdmicas asociadas a los desequilibrios.

3.2 Obijetivos especificos

» Realizar andlisis exploratorio de datos, a nivel univariante, para comprender las prin-
cipales caracteristicas de la serie temporal objetivo, y, por otra parte, realizar analisis
multivariante con las potenciales variables exégenas para detectar el grado de correla-
cion entre las variables, patrones y tendencias.

* Implementar un modelo de boosting (CatBoost) y un modelo de series temporales
(Prophet), incorporando las variables mas significativas, y, ademas, descifrar el me-
jor conjunto de hiperparametros de cada modelo, mediante grid-search y validacion
cruzada de series temporales.

+ Comparar el RMSE obtenido de cada modelo con el conjunto de validacion, después
de obtener el mejor conjunto de hiperparametros para cada modelo mediante la optimi-
zacion con el conjunto de train. Finalmente, poner en produccién el mejor modelo para
este estudio y evaluar con el conjunto de test su desempenio.

3.3 Beneficios del proyecto

Este proyecto aporta a las comercializadoras una herramienta predictiva capaz de anticipar
con alta precisién el volumen neto de los desvios generacion/demanda en la red eléctrica
peninsular. Con ella, los agentes podran ajustar proactivamente sus posiciones en el mercado
intradiario, minimizando las penalizaciones asociadas a desequilibrios.

Ademés, al aplicar los ajustes necesarios en el mercado intradiario de forma proactiva, los
agentes participantes contribuyen a mantener la estabilidad del sistema eléctrico, lo que re-
fuerza su seguridad.
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Capitulo 4. DESARROLLO DEL PROYECTO

4.1 Planificacion del proyecto
N¢  Actividad Inicio Fin Dur. (horas)
1 Revision del estado del arte 01-04-2025 05-04-2025 10
2 Recopilacién y unificacién de datos 06-04-2025 28-04-2025 40
3 Preprocesamiento y limpieza 29-04-2024 04-05-2025 10
4 Ingenieria de variables 05-05-2024 19-05-2025 20
5 Implementacién de modelos 20-05-2024 25-05-2025 10
6 Validacion y optimizacién 26-05-2024 30-05-2025 10
7 Evaluacién y andlisis economico 31-05-2024 04-06-2025 10
8 Redaccion final y defensa 05-06-2024 02-09-2025 40

Universidad

Tabla 4.1. Cronograma de actividades y esfuerzo del proyecto

Revision del estado del arte: Blsqueda y andlisis critico de proyectos e investiga-
ciones relacionados con modelos de machine learning y modelos estadisticos, cuyo
objetivo es el prondéstico de series temporales asociadas a la red eléctrica.
Recopilacion y unificaciéon de datos: Descarga de series temporales de la red eléc-
trica, datos meteoroldgicos y datos de los dias festivos del pais. Célculo de medias
ponderadas de dichos datos por poblacién para obtener una medida general a nivel
nacional.

Preprocesamiento y limpieza: Imputacion de valores faltantes, unificacion de datos y
deteccion de valores atipicos.

Ingenieria de variables: Generacion de regresores temporales (hora, estacién), agre-
gacion de variables meteoroldgicas y analisis univariantes y multivariantes para detectar
patrones en las series temporales.

Implementacion de modelos: Desarrollo de pipelines CatBoost y Prophet con inclu-
sién de variables exégenas.

Validacion y optimizacion: Validacién “walk-forward” y busqueda de hiperparametros
por grid-search respetando el orden temporal.

Evaluacion de los modelos: Célculo del RMSE de los modelos y estimacién del volu-
men neto de los desvios, con analisis de costes por penalizaciones.

Redaccion final y defensa: Escritura de capitulos, revisién ortografica y preparacion
de la presentacion de defensa.

4.2 Descripcion de la solucién, metodologias y herramientas em-

4.2.1.

pleadas

Recopilacion de datos

Para construir el conjunto de datos necesario para entrenar y evaluar los modelos predictivos,
se reunieron las siguientes fuentes, cubriendo el mismo horizonte temporal (01-01-2015 a 30-
11-2024) para cada variable:
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- Datos de desvios, generacion eodlica y precio diario: descargados manualmente
desde el portal ESIOS de Red Eléctrica de Espafna, usando la funcionalidad de expor-
tacién a CSV que ofrece la interfaz web (REE, 2024).

 Variables meteorologicas (temperatura, horas de insolacién): obtenidas via API
del portal de datos abiertos de AEMET, mediante consultas automaticas que devolvian
series horarias por provincia (AEMET, 2024).

+ Dias festivos: extraidos mediante web-scraping de los calendarios laborales provincia-
les y nacionales (CalendariosLaborales, 2024), asignando un indicador binario y pon-
derado por poblacién.

» Poblacion por provincia: descargada en formato CSV desde la web del Instituto Na-
cional de Estadistica (INE, 2024)), para calcular medias ponderadas de las variables
climaticas.

A continuacién se describen con méas detalle los procedimientos de extraccion y unificacion:

1. ESIOS (desvios, edlica, precio) Los datos horarios se obtuvieron manualmente selec-
cionando el rango de fechas deseado y pulsando “Exportar CSV” en el portal de ESIOS. De
este modo se aseguré una descarga completa y homogénea de todas las series: desvios ne-
tos de generacién/demanda, prevision edlica y precios del mercado diario (REE, 2024). Cada
serie se export6 y guardd en un fichero separado.

A continuacién, se verificé la integridad y coherencia de los datos. Al importar los ficheros en
Python, se realiz6 una inspeccién inicial de cada DataFrame, detectandose inconsistencias
debidas a cambios de hora (horario de verano/invierno) que provocaban saltos temporales.
Para corregirlo, la columna de fecha y hora se normaliz6 eliminando la informacién de zona
horaria y convirtiendo todas las marcas temporales a UTC, garantizando asi una referencia
Unica y continua para el analisis.

2. APl AEMET (clima) Utilizando la libreria requests de Python, se desarrollé un script
que, para cada provincia espariola, consultaba la APl de AEMET vy extraia la temperatura
media diaria y las horas de insolacion. Cada respuesta JSON se parseaba y volcaba a un
DataFrame de pandas.

A continuacion, estos archivos se cargaron en Python para inspeccionar la calidad de los
datos. Como se debia combinar esta informacion con la poblacion provincial, se acordd usar
como clave de unién el nombre de la provincia y el afio. Para ello, primero se estandariz6 el
campo provincia: todos los nombres se convirtieron a mindsculas, sin espacios ni caracte-
res especiales. Este mismo criterio de limpieza se aplic6 mas adelante a otros conjuntos de
variables.

Durante la inspeccién se detectaron valores faltantes en las columnas de temperatura media
e insolacién. Para cuantificar el problema, se calcul6 el porcentaje de Nall en cada serie. En
el caso de temperatura, los valores ausentes eran escasos y dispersos, por lo que se resolvié
imputandolos con el valor inmediatamente anterior (forward-fill), es decir:

T(t) = T(t — 1).
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Para la variable de insolacion, varios intervalos de tiempo carecian por completo de datos en
ciertas provincias, por lo que el método forward-fill no era adecuado. En este caso, cada NaN
se reemplazé por el promedio de las demas provincias en esa misma fecha. Si en la fecha t
habia datos de insolacién en 14 provincias y faltaban en 5, dichos cinco valores se imputaron
con la media calculada de las 14 provincias disponibles.

Una vez unificados los nombres y corregidos los valores faltantes, se cred una nueva columna
concatenando afio y provincia limpia. Esta clave permiti6é fusionar el DataFrame meteorolo-
gico con el de poblacién y, a partir de ahi, calcular las medias ponderadas de temperatura e
insolacion a nivel nacional.

3. Web-scraping de festivos Utilizando la libreria BeautifulSoup de Python, se recorrie-
ron las paginas de calendarios laborales provinciales. Se identificaron las fechas festivas y se
genero un indicador numérico:

1, si es festivo nacional o domingo,
festivoprovincia(t) = § 0:9; si es sadbado y no es festivo nacional,
Pprov

, Sies festivo regional.
Ptotal

Es importante resaltar que, una vez descargados los datos y unificados en un solo datafra-
me, se estandariz6 la columna "provincia"para asi poder crear la columna entre el afio y la
provincia.

4. Descarga de poblacion (INE) Se descargd un fichero CSV con la poblacion de cada
provincia para el intervalo de tiempo de 2015-2024. Estos valores permitieron calcular los
pesos demograficos % utilizados en la agregacion de variables climaticas y dias festivos,
como se explicéd en los apartados anteriores.

Con estas cuatro fuentes se dispuso de un dataset unificado, alineado en frecuencia horaria

y geografica, listo para su limpieza y posterior analisis.

4.2.2. Analisis exploratorio de datos

Andlisis univariante temporal y estacional Para comprender el comportamiento de la se-
rie de volumen neto de desvios, en primer lugar se gener6 un conjunto de variables exégenas
a partir de la marca temporal. De la columna de fecha y hora se obtuvieron las variables: hora,
dia del mes, semana del afo, dia de la semana, mes, trimestre y semestre. Estas caracteris-
ticas permitieron investigar posibles patrones y estacionalidades en la serie principal.

Acto seguido, se traz6 graficamente la variable objetivo utilizando matplotlib y seaborn. La
serie temporal se represent6 con un grafico de lineas, su distribucion se examindé mediante
un histograma y se evalué el ajuste a la normalidad con un QQ-plot. Esta exploracion inicial
ofreci6 una visidn clara de tendencias, picos y colas de la distribucion.
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Para determinar la estacionariedad, se aplico el test de Dickey—Fuller aumentado usando el
modulo de Python "statsmodels". El estadistico resultante y su p-valor permitieron evaluar si
la media y la varianza se mantenian constantes a lo largo del tiempo. A continuacion, se em-
pleé la prueba de Ljung—Box para verificar la autocorrelacion serial y detectar dependencias
significativas entre valores separados por distintos lags.

Asimismo, la normalidad de la serie de desvios se contrasté mediante las pruebas de Shapi-
ro—Wilk y Kolmogoérov—Smirnov, utilizando el médulo de Python scipy. Estas pruebas permi-
tieron evaluar si la suposicion de normalidad era razonable o si resultaba necesario aplicar
transformaciones a los datos. Cabe destacar que, si bien los modelos empleados en esta
investigacion no requieren estrictamente que se cumpla el supuesto de normalidad, cono-
cer si la distribucién empirica se aproxima a una normal resulta igualmente importante, dado
que esta informacion puede ser crucial para la interpretacion de resultados y la aplicacién de
técnicas estadisticas complementarias.

Para profundizar en las correlaciones temporales, se generaron los correlogramas (ACF y
PACF). Mediante ellos se identificaron los retardos (lags) en los que los valores pasados
de la serie o sus errores explicaban parte de la varianza futura, lo cual sirve de guia para
la seleccién de érdenes en modelos ARIMA o para el disefio de ventanas de retardos en
algoritmos de machine learning.

Posteriormente, se calcularon estadisticas descriptivas basicas y avanzadas: media, media-
na, percentiles 25 y 75, minimo, maximo, desviacion tipica, coeficiente de asimetria y curtosis.
Este resumen cuantitativo complement6 la inspeccion gréfica y los contrastes de hipotesis,
revelando posibles sesgos, dispersion y colas en la distribucién de los desvios, y oriento la
eleccion de las familias de modelos predictivos mas adecuadas.

A fin de suavizar las fluctuaciones diarias y poner de relieve patrones de mayor escala, la
serie de volumen neto de desvios se re-muestred con frecuencia semanal y se representd
ano por ano. Este procedimiento permitié atenuar la variabilidad a corto plazo y, al compa-
rar cada temporada anual por separado, identificar posibles comportamientos recurrentes en
determinados meses.

Seguidamente, se generaron mapas de calor (heatmaps) del volumen neto de desvios usan-
do como ejes el dia de la semana y la hora del dia. De este modo se visualizaron con claridad
las franjas horarias y jornadas en que los desequilibrios tienden a concentrarse. Para profun-
dizar en la estacionalidad semanal y mensual, se elabor6 un heatmap global —abarcar todo
el intervalo 2015-2024— y, ademas, un heatmap individual para cada mes del afio. Cabe des-
tacar, que estas representaciones graficas se analizaran en la seccién de resultados, donde
se destacaran los picos de desvio asociados a horas punta y a eventos estacionales.

Analisis multivariante temporal y estacional Con el fin de evaluar las relaciones entre la
variable objetivo (volumen neto de desvios) y el conjunto de variables exdgenas, asi como de
identificar posibles problemas de multicolinealidad, se siguié el siguiente protocolo metodol6-
gico:

Se construyd una matriz de correlaciéon de Pearson que incluyé todas las variables numéri-
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cas (regresores temporales, climaticos y de mercado). En los casos de alta correlacion entre
regresores, se selecciond el predictor con mayor correlacién con la serie de desvios, garan-
tizando asi un conjunto de variables explicativas parsimonioso. Sin embargo, no se asegura
que el conjunto de datos esté libre de multicolinealidad, pero si se reduce considerablemente
el riesgo de que esta se presente.

Por otra parte, a partir de las variables exégenas originales, se crearon un conjunto de nuevos
atributos con el fin de facilitar la captura de patrones no lineales y profundizar los analisis
exploratorios:

 Tipo de clima: basado en la distribucién de la temperatura media. Se calcularon los
percentiles 25, 50 y 75 de la serie; los valores por debajo del p25 se etiquetaron como
“frio”, los entre p25 y p50 como “templado”, los entre p50 y p75 como “calido” y los
superiores a p75 como “muy calido”.

« Grupo_hora: resultado del andlisis de los mapas de calor. Las horas entre las 07:00 y
las 20:00 se agruparon bajo la etiqueta “dia” y el resto como “noche”, para diferenciar
patrones de comportamiento diurno y nocturno.

» Estacion del ano: categorizacién de los meses en las cuatro estaciones: primave-
ra (marzo—mayo), verano (junio—agosto), otono (septiembre—noviembre) e invierno (di-
ciembre—febrero).

» Festivo (agrupado): versidon no ponderada de la variable festivo, donde sabados y
festivos reginales se consideran un Unico grupo “medio festivo” y los festivos nacionales
otro grupo “festivo”.

» Rezago 1h del volumen de desvios: variable de retraso de una hora de la serie obje-
tivo, incorporada tras observar en los correlogramas que el lag 1 aportaba informacién
significativa para la prediccion.

Con estas transformaciones se amplio el espacio de caracteristicas, facilitando a los modelos
la deteccion de efectos estacionales, horarios y de temperatura sobre el volumen neto de
desvios.

Sin embargo, una inspeccion visual resultaba pertinente para analizar cémo las nuevas ca-
racteristicas capturaban la variabilidad del volumen neto de desvios y las relaciones con las
exogenas. Para ello, se siguio este procedimiento:

« Diagramas de caja (boxplots) del volumen neto de desvios agrupado por tipo de cli-
ma, estacion del afio y grupo_hora. Estos graficos permiten apreciar de un vistazo la
dispersion, los cuartiles y la existencia de valores atipicos en cada categoria.

» Graficas de lineas comparativas entre el volumen neto de desvios y variables exdge-
nas clave (prevision edlica y precio del mercado diario). Cada par de series se re-
present6 con distintas agregaciones temporales: diaria, semanal, mensual, trimestral,
semestral y anual, con el fin de revelar tendencias y sincronias a diferentes escalas.

« Escalado de variables: antes de trazar las series, todas las variables numéricas (vo-
limenes, precios, temperatura, viento, horas de insolacién) se normalizaron para com-
partir rango y unidad estadistica. De este modo, las gréaficas de lineas comparativas
resultaron mas informativas y facilitaron la deteccion de correlaciones.

» El mismo proceso de escalado y visualizacién se aplicd a pares de variables explica-
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tivas (temperatura vs. velocidad del viento, temperatura vs. insolacién), con objeto de
identificar co-movimientos y posibles redundancias.

Estas representaciones graficas, junto con el escalado previo, proporcionan una visién clara
de los patrones conjuntos y sirven de guia para la seleccion y parametrizacién de los modelos
predictivos.

Para concluir con los analisis exploratorios se considero cuantificar la dependencia temporal
entre el volumen neto de desvios y la temperatura media. Para ello, se empled un analisis de
correlacion cruzada (cross-correlation). Mediante una funcién implementada en Python, se
generé un vector de retardos ¢ € [—24,24] y, para cada ¢, se calcul6 el coeficiente de correla-
cién de Pearson entre la serie de desvios y la serie de temperatura desplazada ¢ horas. Este
enfoque permite determinar qué valores pasados de la temperatura (lags positivos) guardan
mayor asociacién con el valor actual de los desvios, y viceversa (lags negativos).

Cabe destacar, que el mismo protocolo metodolégico se replico para otras variables exégenas
relevantes: prevision edlica, precio del mercado diario e insolacién horas. Para cada una, se
construy6 la curva de correlacion cruzada en el rango de —24 a +24 horas, de modo que los
picos en lags positivos indiquen los desfases temporales mas informativos para la prediccién
del volumen neto de desvios y sirvan de guia para la seleccion de rezagos en los modelos
predictivos.

Modelado con CatBoost y analisis de importancia de variables Para cuantificar la con-
tribucion de cada variable explicativa a la prediccion del volumen neto de desvios, se entrend
un modelo de CatBoost Regressor siguiendo este procedimiento:

1. Particion temporal de los datos: el conjunto completo se dividié en dos subconjuntos
entrenamiento (90 %) y prueba (10 %)—respetando el orden cronoldégico para evitar
filtrado de informacion futura.

2. Seleccion de caracteristicas: las variables predictoras se agruparon en dos listas:

* Numéricas: temperatura, insolacion, velocidad del viento, precio de mercado, pre-
visién edlica, y variables temporales (hora, dia, mes, semana, trimestre, semestre,
ano) junto al rezago de desvios a una hora.

» Categoricas: tipo de clima, grupo_hora, estacion y festivo.

3. Configuracion del modelo:

* lteraciones: 500

+ Tasa de aprendizaje (learning rate): 0.05

Profundidad maxima de arboles: 6

* Funcién de pérdida y métrica de evaluacién: RMSE

« Early stopping con 50 rondas de paciencia, usando el conjunto de validacion

Estos valores se eligieron para garantizar que el modelo entrenara lo suficiente como
para estabilizar las importancias sin entrar en una busqueda exhaustiva de hiperpara-
metros. Un ndmero alto de iteraciones (500) asegura que cada variable tenga oportuni-
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dad de aportar a la reduccién del error, mientras que una tasa de aprendizaje moderada
(0.05) y una profundidad limitada (6) evitan un sobreajuste excesivo. El uso de RMSE
como funcién de pérdida y métrica de evaluacion permite cuantificar directamente la
desviacion media en las mismas unidades de la serie, y el early stopping con paciencia
de 50 rondas previene el entrenamiento innecesario una vez que el RMSE en validacion
deja de mejorar.

4. Entrenamiento: se construy6 un Pool de CatBoost para entrenamiento y validacion,
indicando explicitamente cuales variables eran categoricas, y se ajusté el modelo opti-
mizando el RMSE sobre el conjunto de validacion.

CatBoost maneja internamente las variables categéricas mediante codificaciones ba-
sadas en estadisticas de la propia variable objetivo, por lo que pasar un Pool con esa
informacion permite explotar esa caracteristica sin convertir manualmente cada cate-
goria en dummies (Prokhorenkova et al., 2018). Optimizar sobre el RMSE en validaciéon
asegura que las predicciones futuras conserven la capacidad de capturar la tendencia
y los patrones generales de la serie, ya que la evaluacion se realiza con datos que no
se usaron directamente para ajustar los pesos del modelo (Prokhorenkova et al., 2018).

5. Extraccion de importancia: una vez finalizado el fit, se obtuvo el feature importance de
CatBoost y se representé graficamente mediante un diagrama de barras horizontales
para visualizar qué variables aportan con mayor peso al poder predictivo.

Este enfoque permiti6 identificar de forma robusta las caracteristicas mas relevantes —tanto
numeéricas como categoricas— y sirvid de base para depurar el conjunto de regresores antes
de la fase final de evaluacion.

Es importante sefalar que este procedimiento fue llevado a cabo con el lenguaje de progra-
macién Python, especificamente con los modulos sklearn y catboost.

Una vez realizado el analisis de importancia de variables, se procedi6 con la configuracién
del modelo CatBoost.

Entrenamiento y ajuste de hiperparametros con CatBoost Para optimizar la capacidad
predictiva de CatBoost sobre el volumen neto de desvios, se aplico el siguiente protocolo:

1. Definicion de variables. Se establecié como variable objetivo volumen_neto_desvios
y como predictores un conjunto mixto de caracteristicas numéricas y categoricas:

» Numeéricas: volumen neto desvios lag1, hora, afo, temperatura en celsius, insola-
cién horas, semana, precio mercado, mes, prevision edlica mw.
+ Categdricas: grupo hora.

2. Particion temporal. El DataFrame completo se dividié en dos subconjuntos cronol6gi-
cos:

» Entrenamiento y Validacién (90 % de las observaciones).
* Prueba (10 %).
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Esta division asegura que no haya filtrado de informacion futura durante el ajuste de
hiperparametros.

3. Validacion cruzada para series temporales. Se empled TimeSeriesSplit con 5 par-
ticiones para respetar la dependencia temporal durante la busqueda de parametros.

4. Grid search de hiperparametros. Se configuré un espacio de blsqueda que incluia:

* iterations: [300, 500]

* learning_rate:[0.05, 0.1]
depth: [4, 6, 8]

* 12_leaf_reg:[1, 3, 5]

* bagging_temperature: [0, 1, 3]

Usando GridSearchCV con scoring de RMSE (negativo para maximizar) y procesa-
miento en paralelo, se identificaron los valores de hiperparametros que minimizan el
error de validacion.

Con el objetivo de poder comparar estos resultados con las diferentes metodologias, se
extrajo el RMSE positivo y, ademas, se calculé el SMAPE, para de esa forma obtener
el error porcentual.

5. Entrenamiento del modelo final. Con los mejores parametros hallados, se reentrené
CatBoost sobre el conjunto completo de entrenamiento (90 % de los datos) y se calcul6
la precision del modelo para capturar los signos de los desvios, ya sean positivos o
negativos. Posteriormente, se obtuvo la precisién del modelo (accuracy).

Modelado con Prophet El protocolo aplicado al modelo Prophet resulté muy similar al del
modelo CatBoost, en cuanto a la definicién de variables, la particion temporal y la validacion
cruzada para series temporales. Esto se debi6 a que se buscd una metodologia similar con el
propésito de comparar la efectividad de ambos modelos; por lo tanto, dichos procedimientos
se llevaron a cabo de forma similar.

No obstante, los parametros e hiperparametros del modelo Prophet son distintos y, por lo
tanto, requieren un proceso diferente.

Para afinar los hiperparametros del modelo se utilizo un grid con tres valores para la flexibili-
dad de la tendencia y tres para la fuerza de la estacionalidad.

* changepoint_prior_scale: [0.01, 0.05, 0.1]
* seasonality_prior_scale:[1.0, 10.0, 20.0]

Posteriormente, se emplearon cinco particiones temporales sucesivas para aplicar validacién
cruzada, en las que cada particion entrenaba al modelo con los datos mas antiguos y se vali-
daba con el conjunto de datos inmediatamente posterior. Después de recorrer las particiones,
se calculaban el RMSE y el SMAPE promedio provenientes de cada conjunto de evaluacion;
de esa forma, se obtenia una métrica robusta, capaz de prevenir el sobreajuste.

Ademas, luego de haberse ejecutado cada una de las posibles combinaciones de hiperpara-
metros y de haberse obtenido, para cada combinacién, sus respectivas métricas de bondad

32



Prediccién del volumen neto de los desvios E Universidad
Edgar Romero Depablos Europea

de ajuste, se escogié el RMSE mas bajo y sus respectivos hiperparametros.

Para evaluar qué tan bien el modelo Prophet, ya calibrado con los mejores parametros, cap-
tura la direccién de los desvios, se reentrend con el conjunto de datos de entrenamiento. Una
vez ajustado el modelo final, se generaron predicciones sobre el mismo conjunto de datos
para obtener la precisién del prondstico de la tendencia de la serie; es decir, identificar si el
volumen neto de los desvios es negativo o positivo y compararlo con modelos previamente
configurados (como el modelo CatBoost).

Modelo hibrido Catboost-Prophet Con el objetivo de mejorar la precisidén de los prondsti-
cos, se combinaron las predicciones de CatBoost y Prophet mediante un ensamblado ponde-
rado, de forma tal que el modelo mas preciso recibiera mayor peso. Primero, se calculd para
cada modelo un peso proporcional a la inversa de su RMSE obtenido mediante validacion
cruzada, es decir:

1 ORI
N RMSE; ‘ N ij]’7

w;
Posteriormente, se normalizaron los pesos para que sumaran 1. Con los pesos normalizados,
se genero la prediccion hibrida en cada instante mediante la siguiente férmula:

A (n) - (n) ~
Yhibrido = Wyt YCatBoost T Wpyop YProphet -

Después, se calculdé el RMSE de esta nueva serie y la precisién que tuvo el modelo para
capturar las tendencias, con el propdsito de corroborar si la union de ambos modelos derivaba
en un modelo mas robusto y eficiente.

Modelo Catboost Multi-salida Con el propésito de implementar el enfoque multi-salida con
CatBoost y poder pronosticar las préximas 24 horas del volumen neto de desvios, se llevd
a cabo una transformacién de datos en la que cada fila corresponde a la referencia de las
00:00 de un dia. Por otra parte, se tomaron los valores rezagados de la variable objetivo
como variables explicativas—en este caso, las Ultimas 48 horas. En paralelo, se incluyeron
las variables exdgenas utilizadas en los modelos anteriores, con la excepcion del rezago de
una hora. Como variable objetivo, se tienen los valores reales de los desvios desde las 00:00
hasta las 23:00 horas. Cabe destacar que cada hora corresponde a una columna.

Ademas, se aplicé una transformacién one-hot encoding a las variables categoéricas y, pos-
teriormente, todas las variables explicativas se transformaron al tipo float. A continuacion, se
dividio el conjunto de datos en entrenamiento y prueba con una proporcion de 90% y 10 %,
respectivamente. Después, se separaron las variables explicativas del conjunto de variables
objetivo.

Cabe destacar que el pipeline de preprocesamiento incluyd una estandarizacion y, dado que
existe una alta dimensionalidad, se agreg6é un PCA manteniendo el 95 % de la varianza de los
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datos. Ademas, se realizé una validacién cruzada con 3 particiones respetando el orden cro-
noloégico. Por dltimo, después de haber seleccionado el mejor conjunto de hiperparametros,
se entrend el conjunto de entrenamiento para obtener el modelo final.

Con el modelo final entrenado, se evalué su precision con los datos de prueba, obteniendo
las métricas RMSE y SMAPE para cada hora; es decir, se obtuvieron 24 valores por métrica.
Adicionalmente, se evalué la precisidon para estimar si el desvio seria negativo o positivo.

Simulacion de penalizaciones y gastos Para poner a prueba el valor de las predicciones
obtenidas por el modelo multi-salida, se realiz6é una simulacion de cémo habria operado una
comercializadora siguiendo la estrategia sugerida por el modelo, comparandola contra una
estrategia de compra con un valor constante.

Para ello, se construy6 un conjunto de datos con el precio del mercado, el precio de las
penalizaciones por desvios al alza y a la baja, las predicciones del volumen neto de los
desvios y los valores reales, dentro del intervalo de tiempo correspondiente a los datos de
prueba.

Una vez cargados los datos y configurado el conjunto (dataset), se calcularon las penaliza-
ciones de la siguiente manera:

Wsubir(t) = pspot(t> - pdesvios,subir(t>a Wbajar(t) = pdesvios,bajar<t) - pspot(t)'

|Av(t)| msuir(t), Av(t) <0,
ct) =
Av(t) mogar(t),  Auv(t) >0,

Posteriormente, se simulé la compra, en donde se plantearon 2 estrategias. En la primera,
la comercializadora compraria un volumen constante de 100 MW cada hora, sin importar la
volatilidad de los desvios. Por otra parte, si se consideran los desvios pronosticados como
parte de la estrategia de compra, la comercializadora comprara 100 MW cada hora mas la
centésima parte de la desviacion pronosticada. Cabe destacar que se toma la centésima
parte porque los desvios pronosticados son del sistema eléctrico de Espafa y no de un
agente en especifico. Por lo tanto, solo se toma una parte de los mismos.

El calculo de la compra se expresa de la siguiente forma:

O(t
compra_con_estrategia(t) = L + Zég (4.1)

« L =100 MW
* 0(t) = volumen neto de desvios predicho en la hora ¢

A continuacion, se generd un vector de desviaciones a partir de una distribucion normal para
emular variabilidad en el consumo real de la empresa. Los parametros de la distribucion son
ficticios y se seleccionaron con el criterio de que la probabilidad de observar un desvio supe-
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rior a 45 MW sea aproximadamente del 0,3 %. A partir de ese valor, se calcul6 el consumo
real, el cual es el desvio real simulado mas la compra base (100 MW). Teniendo el consumo
real, se determin6 el desvio con estrategia; el mismo es la diferencia entre el consumo real
menos la compra con estrategia. Expresado en férmulas, serian las siguientes:

Vreal(t) ~ N(0, 15%), (4.2)
Creal(t) = Vreal(t) + L,
A/Uconiestrategia(t) — Crea|(t) - Compra_Con_eStrategia(t)

Por ultimo, a partir del desvio con estrategia, se obtuvo el coste de las operaciones con estra-
tegia y el coste sin estrategia. Dichos céalculos se pueden representar mediante las siguientes
formulas:

}Ureal(t)‘ Tsubir (1), Vreal(t) <0,
Coriginal(t) = (4-5)
Vreal(t) 7"'bajar(t)a Vreal(t) > 0,
}Avcon_estrategia(t)‘ 7Tsubir(t)v AUcon_estrategia(t) <0,
C’con_estrategia(t) = (4-6)
AUcon_estrategia(t) 7Tbajar(t)v A"Ucon_estrategia(t) > 0.

4.3 Recursos requeridos
A continuacion se enumeran los recursos utilizados para la ejecucion de este proyecto:

» Hardware
» Ordenador personal con procesador Ryzen 5, 8 GB de RAM y almacenamiento
SSD.
» Conexion a Internet para descarga de datos y librerias.
+ Software
» Python 3.10.0 y entornos virtuales (venv) para instalacién de librerias.
« Librerias de analisis y modelado:
* pandas, NumPy, scikit-learn
» CatBoost, fbprophet
* matplotlib, seaborn
» VS Code como entorno de desarrollo.
« Distribucién IATEX (TeX Live / Overleaf) para la redaccion del documento.
+ Datos
» Series de volumen neto de desvios y variables exégenas obtenidas de ESIOS,
AEMET y scraping web.
* Precios del mercado spot e intradiario descargados de OMIE y REE.
+ Asistencia de expertos
« Tutor académico, con reuniones periddicas para revisidn de avances metodolégi-
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cos y de redaccion.
4.4 Resultados del proyecto

En esta seccién se presentan los resultados obtenidos durante la fase de analisis de datos y
modelado. El objetivo es mostrar de forma ordenada y precisa los siguientes apartados:

+ Analisis univariante: Se analiza la serie de volumen neto de desvios, incluyendo prue-
bas estadisticas de hipétesis y visualizaciones a diferentes escalas temporales.

+ Analisis multivariante: Se examinan las relaciones entre la variable objetivo y las va-
riables exdgenas.

» Evaluacion de modelos: Se emplean métricas de precision y comparativos entre los
modelos Prophet, CatBoost y un modelo hibrido. También se evalla el modelo CatBoost
con enfoque multi-salida.

» Simulacion econdmica: Se calcula el impacto financiero de aplicar la estrategia de
prediccién frente a una politica de compra constante.

4.4.1. Analisis univariante

Estadisticas descriptivas

Se presentan los estadisticos descriptivos correspondientes al volumen neto de los desvios.
Dichos indicadores permiten la comprensién de su distribucién, tendencia central, dispersion
y forma de la variable, proporcionando una base para entender su comportamiento y orientar
los analisis posteriores.

Tabla 4.2. Estadisticos descriptivos del volumen neto de desvios

Estadistico Valor
Minimo -5315.600
Percentil 25 -374.300
Media 123.338
Mediana 130.900
Percentil 75 627.200
Maximo 5507.100
Asimetria 0.019
Curtosis 1.659
Coeficiente de variacion 7.024
Desviacién tipica 866.366

El volumen neto de los desvios presenta un amplio rango de valores, con un minimo de
-5315.60 y un maximo de 5507.10, lo cual indica una alta dispersion y la existencia de des-
viaciones extremas tanto negativas como positivas. La media (123.34) y la mediana (130.90)
estan relativamente cercanas, lo cual, junto al valor muy bajo de asimetria (0.019), sugiere
que la distribucion es casi simétrica, aunque con una ligera inclinacion hacia valores mas
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altos. La variabilidad es considerable, como lo reflejan el coeficiente de variacién (7.02) y la
desviacién tipica (866.37). Con respecto a la curtosis, el valor calculado (1.66) corresponde
al exceso de curtosis respecto a una distribucion normal, lo que indica una forma leptocurtica,
con mayor concentracion de datos cercanos a la media y colas mas pesadas. Finalmente, los
percentiles 25 (-374.30) y 75 (627.20) definen un intervalo central de dispersién moderada,
en el que se concentra el 50 % de los datos.

Analisis grafico

Se presentan a continuacion tres visualizaciones clave que permitiran obtener informacion
relacionada con la distribucién de la variable de estudio, si es estacionaria o0 no, y si presenta
algun tipo de sesgo. Cabe destacar que los estadisticos descriptivos fueron capaces de pro-
veer cierta informacién. Por lo tanto, se espera que las visualizaciones complementen dichos
analisis.

Serie Temporal del Volumen Neto de Desvios

— \Volumen neto (MWh)

2000

Volumen neto (MWh)

—2000

—4000

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Fecha y hora

Figura 4.1. Serie temporal del volumen neto de desvios.
Fuente: Calculos propios.

Distribucién del Volumen Neto de Desvios

10000

8000

6000

Frecuencia

2000

—a000 2000 #8000

Velumen neto (MWh)

Figura 4.2. Histograma con densidad del volumen neto de los desvios.
Fuente: Calculos propios.
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QQ-Plot para Volumen Neto Desvios
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Figura 4.3. Grafico Q-Q del volumen neto de los desvios.
Fuente: Célculos propios.

Se puede apreciar que la grafica de serie temporal corrobora visualmente la alta dispersién y
el amplio rango de valores, mostrando fluctuaciones constantes y la presencia de desviacio-
nes extremas a lo largo del tiempo, sin un patrén estacional o tendencia clara aparente. Por
otra parte, el histograma complementa el andlisis previo en los estadisticos descriptivos de la
casi simetria de la distribucidn y evidencia su forma leptocurtica. Finalmente, el grafico Q-Q
refuerza esta conclusién al mostrar una clara desviacion de los puntos respecto a la linea de
normalidad en los extremos, lo que subraya la naturaleza no normal de la distribucion y la
existencia de colas pesadas.

ACF y PACF

La exploracion de los correlogramas es esencial para diagnosticar autocorrelacion en la serie
de desvios. La funcion de autocorrelacion (ACF) muestra la correlacidén entre un valor y sus
rezagos, incluidos los efectos indirectos que pasan por rezagos intermedios, mientras que
la funcion de autocorrelacion parcial (PACF) aisla Unicamente la correlacion directa de cada
rezago, controlando esas influencias intermedias (Hyndman & Athanasopoulos, 2018).
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100 ACF (Autocorrelation Function)
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Figura 4.4. Funcién de autocorrelaciéon (ACF).
Fuente: Calculos propios.

100 PACF (Partial Autocorrelation Function)
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Figura 4.5. Funcién de autocorrelacién parcial (PACF).
Fuente: Calculos propios.

Se puede apreciar que ambos graficos revelan indicios de autocorrelacién en la serie. En
el correlograma ACF se observa un decaimiento progresivo que se mantiene por encima
de los limites de confianza hasta aproximadamente el rezago seis, lo cual indica memoria
prolongada en la serie (efectos indirectos). En el PACF, Unicamente el primer rezago supera
el umbral de significacion, mientras que los siguientes caen rapidamente al nivel de ruido. Este
patron de decaimiento lento en el ACF, junto con un Unico pico en el PACF, sugiere que un
modelo autorregresivo de orden uno (AR(1)) podria capturar adecuadamente la dependencia
lineal de corto plazo en el volumen neto de los desvios.

Contraste de hipotesis

Es de vital importancia corroborar de manera rigurosa los analisis y conclusiones obtenidos
anteriormente. Para ello, se llevaron a cabo una serie de pruebas estadisticas que permiten
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determinar, con un nivel de significacion adecuado, si los supuestos antes mencionados son
veridicos o no.

A continuacion, se presenta la prueba de Dickey—Fuller aumentada, la cual permite determi-
nar si la serie temporal es estacionaria. Posteriormente, se realiza una prueba para evaluar
si la serie presenta dependencia temporal; dicha prueba se denomina Ljung—Box. Por Gltimo,
se verifica si la distribucién empirica de la serie es similar a una distribucion normal. Para ello,
se empleo la prueba de Shapiro—Wilk.

ADF (Dickey-Fuller aumentada)

Hipétesis:

* Hy: La serie tiene raiz unitaria (no estacionaria).
* Hy: La serie es estacionaria.

Tabla 4.3. Resultados del test ADF (Dickey—Fuller aumentada) para o« = 0,05

Contraste Estadistico Region critica Nivel de significacion  p-valor

ADF r=-2610 T<-195 0,05 p = 0,000

Conclusion: Con un nivel de significacién del 5%, se rechaza Hj. Por lo tanto, se puede
concluir que la serie temporal del volumen neto de los desvios en el intervalo 2015-2024 es
estacionaria.

Test de Ljung-Box

Hipétesis:

* Hj: No existe autocorrelacién significativa hasta el lag 10.
» H;: Existe autocorrelacion significativa en al menos un lag < 10.

Tabla 4.4. Resultados del test de Ljung—Box (lag=10) para o = 0,05

Contraste Estadistico Region critica Nivel de significacion  p-valor

Liung-Box X2 =193894,72 2 > 18,31 0,05 p = 0,000

Conclusion: Con un nivel de significacién del 5%, se rechaza Hy. Por lo tanto, se confirma
que la serie presenta autocorrelacion.
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Shapiro-Wilk
Hipétesis:
* Hy: La distribucién de la variable es normal.
e Hjy: Ladistribucién no es normal.
Tabla 4.5. Resultados del test de Shapiro—Wilk para o = 0,05
Contraste Estadistico Region critica Nivel de significacion  p-valor
Shapiro-Wilk W = 0,89 W < 0,975 0,05 p = 0,001

Conclusion: Con un nivel de significacion del 5%, se rechaza Hy. Se observa que la distri-
bucién del volumen neto de los desvios no se ajusta a una normal.

Analisis a diferentes frecuencias temporales

Como complemento al analisis univariante de la serie horaria, se agruparon los datos de vo-
lumen neto de desvios en frecuencias mayores (diaria, semanal, mensual, trimestral y anual).
Esto permite detectar patrones de variacion a distintas escalas temporales, como tendencias
a largo plazo, estacionalidades o ciclos que no siempre resultan evidentes en la serie horaria.

Serie Temporal Agrupada por Dia

= Diaria
3000

2000

1000

Volumen Nete de Desvios (MWh)

—1000

—2000

2015 2016 017 2018 201% 2020 2021 2022 2023 2024 2025
Fecha

Figura 4.6. Serie diaria del volumen neto de desvios.
Fuente: Calculos propios.
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Serie Temporal Agrupada por Semana
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Figura 4.7. Serie semanal del volumen neto de desvios.
Fuente: Célculos propios.

Se puede observar que existe una leve tendencia bajista a través del tiempo. Es decir, que
durante los afios 2015 hasta 2018 la energia consumida parece ser mayor que la programada
en promedio. Posteriormente, durante los afios 2019 hasta 2022, parece que la volatilidad de
la serie disminuye, con valores cercanos a cero y pocos valores atipicos. Finalmente, durante
el periodo de 2022 hasta 2024, hay patrones que indican que la energia consumida es menor
que la programada, debido a la mayor cantidad de picos negativos.

Para las frecuencias mensual, trimestral, semestral y anual vease el Anexo A.

Evolucion mensual afio a afio

Para profundizar en el comportamiento estacional a nivel anual, se generaron graficos de
la serie mensual del volumen neto de desvios desglosados por afio. Esto permite comparar
patrones de variacién intraanuales y detectar posibles cambios en la estacionalidad a lo largo
del periodo de estudio.
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Volumen Neto de Desvios (Mensual) - Afio 2015
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Figura 4.8. Serie mensual del volumen neto de desvios (2015).
Fuente: Calculos propios.

Volumen Neto de Desvios (Mensual) - Afio 2016

— Ao 2016
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Figura 4.9. Serie mensual del volumen neto de desvios (2016).
Fuente: Calculos propios.

Se puede observar que, durante los meses de abril a septiembre en los afios 2015 y 2016, el
volumen neto de los desvios presenta valores mensuales promedio superiores al del resto de
los meses. Esto indica que existen indicios de estacionalidad en la serie, por lo que generar
variables como la estacion del afo o el trimestre podria ayudar a los modelos de aprendizaje
automatico a capturar dichos patrones y proporcionar pronésticos mas precisos.

Los graficos correspondientes a los afios 2017-2024 se incluyen en el Anexo B.

Patrones intrasemanales mediante mapas de calor

Para visualizar de manera compacta la variacion media del volumen neto de desvios a lo
largo de la semana y el dia, se emplean mapas de calor que muestran el promedio histérico
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para cada combinacién de hora y dia de la semana. Esta representacioén facilita la deteccion
de franjas horarias criticas y diferencias entre jornadas laborales y fines de semana.

Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios)
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Figura 4.10. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia.
Fuente: Célculos propios.

Se puede apreciar que existen patrones en las horas de los dias de la semana, ya que el
mapa de calor refleja una tonalidad roja en las horas comprendidas entre las 22:00 y las 4:00,
de lunes a viernes. Por otra parte, durante los fines de semana, este intervalo se prolonga
hasta las 7:00. Sin embargo, en las horas laborales o durante las horas del dia, el desvio
tiende a ser muy proximo a cero, en comparacién con los intervalos antes mencionados,
con la excepcion del intervalo de 17:00 a 20:00, donde parece que, en promedio, la energia
consumida fue menor que la programada.

Por lo tanto, se puede considerar la captura de estos patrones como variables para futuros
modelos predictivos.

Los mapas de calor desglosados mes a mes se presentan en el Anexo C, proporcionando
una visién mas detallada de como estos patrones intrasemanales pueden variar a lo largo del
afo.

4.4.2. Analisis Multivariante

Relaciones entre variables mediante matriz de correlacion

Para explorar la intensidad y direccion de la asociacién lineal entre el volumen neto de des-
vios y las variables exdgenas (precio spot, prevision eodlica, temperatura, etc.), se construyé

una matriz de correlacién. Este mapa de calor facilita la identificacion de factores con mayor
influencia y posibles multicolinealidades que deban considerarse en el modelado.
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Matriz de Correlacion
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Figura 4.11. Matriz de correlacién entre el volumen neto de desvios y variables exégenas.
Fuente: Calculos propios.

Se puede observar que existe una alta correlacién entre las variables explicativas: precio del
mercado, precio de pago y precio de cobro. Esto es esperable, dado que representan dife-
rentes conceptos dentro del mismo mercado. Se evalua eliminar el precio de cobro y pago
en los futuros modelos, ya que el precio de mercado podria explicar suficientemente el com-
portamiento del conjunto. Ademas, el precio de cobro y pago se determina posteriormente
al desvio; por lo tanto, en un modelo predictivo no seria posible emplearlo como variable
explicativa, ya que se requieren variables que aporten informacién previa al suceso.

Por otra parte, existen otras correlaciones evidentes, como la de insolacion horaria con la
temperatura en grados Celsius, y la de previsién edlica con la velocidad media del viento. No
obstante, dichas variables seran puestas a prueba en un modelo predictivo de aprendizaje
automatico, con el fin de evaluar cudles resultan mas significativas para el rendimiento del
modelo.

Finalmente, se observa que el volumen neto de los desvios no presenta una fuerte correlacion
con ninguna de las variables explicativas del proyecto. Sin embargo, las variables precio de
cobro, insolacién horaria y prevision eodlica parecen ser las mas importantes. No obstante,
es necesario realizar mas pruebas y evaluar su nivel de significacién mediante técnicas mas
robustas.
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Importancia de caracteristicas con CatBoost

Con el objetivo de entender qué factores explicativos contribuyen en mayor medida a la pre-
diccion del volumen neto de desvios, se entrendé un modelo CatBoostRegressor con los
principales hiperparametros optimizados y posteriormente se calcul6 la importancia de cada
variable. Este analisis permite identificar qué rezagos, variables meteorolédgicas o de calen-
dario resultan mas determinantes y guiar refinamientos futuros en la seleccién de features.

Tabla 4.6. Hiperparametros del modelo CatBoost

Parametro Valor

iterations 500
learning_rate 0.05
depth 6
loss_function RMSE
eval_metric RMSE
random_seed 42

Tabla 4.7. Importancia de caracteristicas obtenida de CatBoost (%)

Feature Importancia
volumen_neto_desvios_lag1 76.41
hora 9.32
anio 3.49
insolacion_horas 1.89
temperatura_cels 1.81
grupo_hora 1.45
precio_mercado 1.24
semana 1.12
prevision_eolica_mw 0.74
mes 0.71
velmedia_ms 0.39
dia_semana 0.29
tipo_clima 0.25
estacion 0.22
trimestre 0.22
festivo 0.18
dia 0.15
semestre 0.11

Analisis de resultados: La importancia de caracteristicas revela que el rezago de un periodo
horario (volumen_neto_desvios_lagl) domina con un 76 %, lo cual confirma que la depen-
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dencia inmediata es la principal fuente de informacion para el modelo. A continuacion, la hora
y el anio aportan casi un 13 % en conjunto, indicando patrones intradia y de largo plazo. Va-
riables climaticas como insolacion_horas y temperatura_cels tienen un peso moderado
(alrededor de 1.8—-1.9 %), mientras que los indicadores de calendario (grupo_hora, festivo,
trimestre, semestre) suman menos del 3 %, lo que sugiere que las variaciones estacio-
nales y festivas tienen un efecto residual. Con base en estos resultados, podria valorarse
descartar o agrupar variables de baja importancia en modelos posteriores.

Resultados del modelo CatBoost

Tabla 4.8. Mejores hiperparametros encontrados por GridSearchCV

Parametro Valor

bagging_temperature 0

depth 4
iterations 300
12_leaf_reg 3
learning_rate 0.05

Tabla 4.9. Desemperio en validacién cruzada (5 folds)

Métrica Valor

RMSEcy  398.53 MWh

Tabla 4.10. Accuracy de signo en entrenamiento+validacion

Métrica Valor

Accuracy de signo  0.844

Analisis de resultados:

El procedimiento de validacion cruzada (5 folds) arroj6 un RMSE medio de 398.53 MWh
con la configuracion optima de hiperparametros. Ademas, el modelo acerté la direccién del
desvio (positivo 0 negativo) en un 84.4 % de los casos sobre el conjunto de entrenamiento y
validacion. Estos resultados justifican el uso de los parametros seleccionados y muestran un
buen equilibrio entre error absoluto y habilidad para predecir la direccion del desequilibrio.
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Resultados del modelo Prophet

Tabla 4.11. Mejores hiperparametros de Prophet segin RMSEcy

Parametro Valor

changepoint_prior_scale 0.01
seasonality_prior_scale 10.0

Tabla 4.12. Desemperio de Prophet en validacion cruzada (5 folds)

Métrica Valor

RMSEcy 408.66 MWh

Tabla 4.13. Accuracy de signo de Prophet en entrenamiento+validacion

Métrica Valor

Accuracy de signo  0.842

Analisis de resultados:

Con los parametros 6ptimos, Prophet alcanzé un RMSE medio de 408.66 MWh en la vali-
dacion cruzada, mostrando un desempenio ligeramente inferior al de CatBoost. La accuracy
de signo del 84.2 % indica que Prophet también captura de forma razonable la direccién del
desvio, aunque con mayor error en magnitud. Estos resultados refuerzan la necesidad de
combinar ambos modelos en un enfoque hibrido para mejorar la precision global.

Resultados del modelo hibrido

Tabla 4.14. Desempefio del modelo hibrido

Métrica Valor

RMSE 402.24 MWh
Accuracy de signo 0.8437

Comparativo de modelos
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Tabla 4.15. Comparacion de RMSE y accuracy entre modelos

Modelo RMSE (MWh) Accuracy de signo
Dummy (lag 1h) 424.26 0.8410
Prophet 408.66 0.8420
CatBoost 398.53 0.8440
Hibrido 402.24 0.8437

Analisis comparativo:

El modelo Dummy basado en el valor de la hora anterior sirve como referencia minima.
Prophet reduce ligeramente el error frente a ese baseline, pero CatBoost ofrece la mayor
reduccion de RMSE (398.5 MWh) y la mejor precision de signo. EI modelo hibrido combina
ambos enfoques: consigue un RMSE intermedio (402.2 MWh) y mantiene una accuracy de
tendencia cercana a la de CatBoost (84.37 %), demostrando que la combinacién pondera-
da aporta estabilidad en la prediccion de direccién sin sacrificar demasiado la precision en
magnitud.

Resultados del modelo CatBoost multi-salida

Tabla 4.16. Hiperparametros finales del modelo multi-salida

Parametro Valor
Profundidad (model__estimator__depth) 6
Iteraciones (model__estimator__iterations) 200

Regularizaciéon L2 (model__estimator__12_leaf_reg) 3

Tabla 4.17. Desempefio continuo por horizonte (RMSE)

Horizonte RMSE (MWh)

+1 hora 438.61
+2 horas 489.38
+3 horas 517.49
+4 horas 541.13
+5 horas 641.82

+6—+12h  845.10-1183.08
+13—+24 h 771.27-1264.38

Promedio 952.04
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Horizonte Accuracy
+1 hora 0.78
+2 horas 0.73
+3—5h 0.77-0.64
+6—+12 h 0.62-0.64

+13—+24 h 0.58-0.69

Promedio 0.66

Tabla 4.18. Precisién de signo por horizonte

Tabla 4.19. Comparativo RMSE y accuracy de signo: multi-salida vs. modelos dummy

Modelo RMSE (MWh) Accuracy de sigho
Dummy (24h lag) 917.77 0.628
Dummy (168h lag) 1086.20 0.556
CatBoost multi-salida (prom.) 952.04 0.660

Analisis de resultados:

El modelo multi-salida muestra un error creciente con el horizonte de prondéstico, partiendo
de un RMSE de 438.6 MWh en la hora +1 hasta valores superiores a 1200 MWh a partir de
la hora +11, con un RMSE promedio de 952.0 MWh. La precisién de signo también decae
levemente con el tiempo, situandose en un 78 % al primer horizonte y un 66 % global. Frente a
los modelos dummy, el multi-salida ofrece un balance intermedio: mejora considerablemente
al dummy semanal y mejora ligeramente al dummy diario en RMSE, mientras mantiene una
precision de direccidén superior. Esto confirma que incorporar multiples horizontes en una
Unica regresion aporta beneficios frente a estrategias ingenuas de lag.

Simulacion econdmica: impacto de la estrategia predictiva

Tabla 4.20. Costes de penalizacion de la comercializadora

Escenario Coste total (EUR)
Sin estrategia (compra fija) 2157079.32
Con estrategia predictiva 2052189.84
Ahorro absoluto 104 889.48
Ahorro porcentual 4.86 %

Analisis de resultados:

La simulacién muestra que, empleando la estrategia basada en las predicciones de volumen
neto de desvios, la comercializadora habria reducido sus costes de penalizacién de 2 157
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079,32 EUR a 2 052 189,84 EUR. Esto equivale a un ahorro absoluto de 104 889,48 EUR
y a una reduccion del 4,86 % en el total de penalizaciones. Estos resultados ilustran el valor
practico de incorporar el modelo en la operativa diaria, contribuyendo a optimizar la posicién
de compra y a disminuir significativamente los gastos asociados al desequilibrio del sistema
eléctrico.
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Capitulo 5. Discusidn

En esta seccion reflexionamos de forma critica sobre los principales resultados, las decisiones
metodoldgicas mas relevantes, las limitaciones encontradas y el impacto potencial de este
trabajo.

5.1 Interpretacion de los hallazgos

El modelo CatBoost simple obtuvo el mejor ajuste cuantitativo (RMSE ~ 398 MWh, accu-
racy de signo 84,4 %), mientras que Prophet ofrecié un desempefio algo inferior (RMSE =~
409 MWh, accuracy 84,2 %). El enfoque hibrido equilibr6 ambas metodologias, manteniendo
una accuracy comparable (84,4 %) y un RMSE intermedio (402 MWh). El modelo multisalida,
si bien permite pronosticar 24 horas de forma directa, muestra un aumento de error al crecer
el horizonte (RMSE promedio =~ 952 MWh, accuracy global 66 %). La simulacién econémica
ejemplifica el valor practico: una reduccién del 4,86 % en costes de penalizacién, equivalente
a mas de 100000 EUR.

5.2 Decisiones metodoldgicas y adaptaciones
Durante el desarrollo se realizaron varias adaptaciones para garantizar robustez y eficiencia:

« Validacién cruzada temporal estratificada para evitar filirado de informacién futura.

+ Ajuste manual de hiperparametros en Prophet para controlar la flexibilidad de tendencia
y estacionalidad.

» Reduccién de dimensionalidad con PCA antes de CatBoost multisalida, para contener
tiempos de entrenamiento.

* Normalizacion del ajuste en la simulacion (divisién del desvio por 100) para cambios de
compra coherentes.

5.3 Limitaciones
A pesar del éxito de los modelos, el estudio presenta limitaciones:

+ Calidad y latencia de datos publicos (ESIOS, AEMET), con posibles sesgos o huecos.
» Pérdida de precision en horizontes largos (k > 6 h) en el modelo multisalida.

» Simplificaciones en la simulacion econdémica (distribucién normal de desvios reales).
» Carga computacional elevada en grid searches y modelos multisalida.

5.4 Impacto practico

Los resultados demuestran que incorporar predicciones de desvios en la estrategia de com-
pra ofrece un ahorro econémico tangible y mejora la estabilidad operativa. La metodologia es
escalable e integrable en herramientas de decision en tiempo real, beneficiando a las comer-
cializadoras y al sistema eléctrico.
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Capitulo 6. Conclusiones

6.1 Conclusiones del trabajo

En este proyecto se ha desarrollado y comparado un conjunto de modelos de prediccién del
volumen neto de desvios en el sistema eléctrico espariol, incluyendo Prophet, CatBoost y un
enfoque hibrido, asi como un modelo multisalida y dos estrategias dummy de referencia. Los
resultados muestran que:

» CatBoost alcanza el RMSE mas bajo (=~ 398 MWh) y una accuracy de signo del 84,4 %,
superando a Prophet (RMSE ~ 409 MWh, 84,2 %) y a las estrategias dummy.

* El modelo hibrido combina ambos enfoques, manteniendo una accuracy similar con un
RMSE intermedio (== 402 MWh).

» El modelo multisalida permite pronosticar 24 horas de forma directa, aunque con un
incremento de error en horizontes largos (RMSE promedio ~ 952 MWh, accuracy global
66 %).

 La simulacién econémica evidencia un ahorro del 4,86 % en costes de penalizacién
(mas de 100000 EUR) al aplicar la estrategia predictiva frente a una compra fija.

Estos hallazgos confirman que incorporar predicciones de desvios en la planificacién de com-
pras contribuye a reducir significativamente los costes operativos y a mejorar la estabilidad
del sistema eléctrico.

6.2 Conclusiones personales

Durante el desarrollo de este trabajo he profundizado en técnicas de series temporales, vali-
dacién cruzada temporal y modelos de aprendizaje automatico, lo que me ha permitido me-
jorar mi habilidad para manejar grandes volimenes de datos y ajustar modelos complejos.
Aprendi la importancia de validar cuidadosamente los supuestos estadisticos (estacionarie-
dad, autocorrelacién, normalidad) antes de modelar y de combinar enfoques para aprovechar
las fortalezas de cada uno.

Este proyecto me ha ensefado a iterar sobre la metodologia, adaptandola segun los resulta-
dos intermedios y las limitaciones de los datos. Ademas, me ha dado una visién practica de
cémo la ciencia de datos puede generar ahorros reales y aportar valor en el sector energéti-
co. En el futuro, me gustaria explorar arquitecturas avanzadas (por ejemplo, redes neuronales
para multisalida) y desarrollar herramientas en tiempo real para facilitar la adopcion de estas
estrategias por parte de las empresas.

53



Prediccion del volumen neto de los desvios E Universidad

Edgar Romero Depablos

Europea

Capitulo 7. Futuras lineas de trabajo

A partir de los resultados obtenidos y de las experiencias durante el desarrollo, se identifican
las siguientes oportunidades para enriquecer y ampliar este proyecto:

Arquitectura de datos y despliegue automatizado: Disefar un flujo de ingesta con-
tinua que, mediante APls y técnicas de web scraping, extraiga automaticamente los
datos de ESIOS, AEMET y demas fuentes. Estos datos se almacenarian en una ba-
se de datos relacional o de series temporales, y un proceso programado (por ejemplo,
con cron o Airflow) los transformaria y volcaria al modelo. De esta forma, el sistema
generaria predicciones periédicas sin intervencién manual, simulando un entorno de
produccién real en una comparia de energia.

Comparativa con modelos de deep learning: Con recursos de computo mas poten-
tes (GPU), entrenar y evaluar arquitecturas basadas en redes neuronales recurrentes
(LSTM, GRU) o modelos hibridos (por ejemplo, Transformer) para forecasting multisali-
da. Estos experimentos permitirian comparar su precisién y eficiencia frente a Prophet
y CatBoost, especialmente en horizontes largos.

Evaluacion de modelos en tiempo real: Integrar un servicio web (REST API) que, a
partir de consultas en tiempo real, devuelva las predicciones de desvios y estimaciones
de costes, facilitando su adopcién por parte de las comercializadoras. Esto incluiria
un panel de control con visualizaciones dinamicas y alertas automaticas ante posibles
desequilibrios criticos.

Ampliacion de variables exdgenas: Incorporar datos adicionales (por ejemplo, pre-
cios de mercados internacionales, generacion distribuida, indicadores econémicos o
demanda sectorial) para explorar su impacto en la precision del modelo y enriquecer el
andlisis de correlaciones.

54



Prediccién del volumen neto de los desvios E Universidad
Edgar Romero Depablos Europea

Referencias bibliograficas

« Al Mamun, A., Sohel, M., Mohammad, N., Sunny, M. S. H., Dipta, D. R., & Hossain, E.
(2017). *A Comprehensive Review of the Load Forecasting Techniques Using Single
and Hybrid Predictive Models*. IEEE Access. Recuperado de https://doi.org/10.
1109/ACCESS.2017 .DoiNumber

» Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). *A note on the validity of using cross-
validation for time series*. Computational Statistics & Data Analysis, 120, 70-83. Recu-
perado de https://doi.org/10.1016/j.csda.2017.10.003

» Box, G. E. P, Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). *Time Series Analy-
sis: Forecasting and Control* (5th ed.). Wiley.

 Caro, E., & Juan, J. (2020). *Short-Term Load Forecasting for Spanish Insular Electric
Systems*. Energies, 13(3645). Recuperado de https://doi.org/10.3390/en13143645

» Chen, T., & Guestrin, C. (2016). *XGBoost: A scalable tree boosting system*. En Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 785-794).

» Clemen, R. T. (1989). *Combining forecasts: A review and annotated bibliography*. In-
ternational Journal of Forecasting, 5(4), 559-583. Recuperado de https://doi.org/
10.1016/0169-2070(89)90032-7

+ Comision Europea. (2023). *Plan de implementacién Espana*. Recuperado de https:
//energy.ec.europa.eu/system/files/2023-11/01_PlandeImplementacion_ES_0.
pdf

» Comision Nacional de los Mercados y la Competencia. (2019). *Informe de supervi-
sién del mercado peninsular 2023*. Recuperado de https://www.cnmc.es/sites/
default/files/3291860_0.pdf

» Comision Nacional de los Mercados y la Competencia. (2023). *Informe de supervi-
sién del mercado peninsular 2023*. Recuperado de https://www.cnmc.es/sites/
default/files/5779264.pdf

« Conde, F. (2016). *Automatizacion y Optimizacién de las Actividades de una Comer-
cializadora® (TFM). Universidad de Sevilla. Recuperado de https://biblus.us.es/

bibing/proyectos/abreproy/71130/fichero/TFM-1130-CONDE.pdf

* Dickey, D. A., & Fuller, W. A. (1979). *Distribution of the estimators for autoregressive
time series with a unit root*. Journal of the American Statistical Association, 74(366a),

55



Prediccién del volumen neto de los desvios E Universidad
Edgar Romero Depablos Europea

427-431. Recuperado de https://doi.org/10.1080/01621459.1979.10482531

» Endesa. (s.f.). *El mercado eléctrico*. Fundacion Endesa. Recuperado de https://
www.fundacionendesa.org/es/educacion/endesa-educa/recursos/el-mercado-electrico

+ Filgueira Fernandez, G. (2024). *Prediccién de Demanda de Gas y Electricidad Utilizan-
do Técnicas Estadisticas Avanzadas e Inteligencia Artificial* (TFG). Universidad Po-
litécnica de Madrid. Recuperado de https://oa.upm.es/82673/1/TFG_GUILLERMO_
FILGUEIRA_FERNANDEZ.pdf

» Friedman, J. H. (2001). *Greedy function approximation: a gradient boosting machine*.
Annals of Statistics, 29(5), 1189-1232.

» Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning:
Data Mining, Inference, and Prediction* (2nd ed.). Springer.

* Hyndman, R. J., & Athanasopoulos, G. (2018). *Forecasting: Principles and Practice*
(2nd ed.). OTexts. Recuperado de https://0Texts.com/fpp2

« Hyndman, R. J., & Athanasopoulos, G. (2018). *Forecasting: Principles and Practice*
(2nd ed.). OTexts.

» Lopez Garcia, M. (2016). *Modelos de prediccion de demanda eléctrica utilizando téc-
nicas de inteligencia artificial. Aplicacién al mercado eléctrico espariol* (Tesis doc-
toral). Universidad Miguel Hernandez de Elche. Recuperado de https://dialnet.
unirioja.es/servlet/tesis?codigo=64987

* Lundberg, S. M., & Lee, S.-I. (2017). *A unified approach to interpreting model pre-
dictions*. En Proceedings of the 31st International Conference on Neural Information
Processing Systems (pp. 4768—4777).

» MagnusCMD. (s.f.). *Desvios en el sistema eléctrico: La vision del consumidor®. Re-
cuperado de https://magnuscmd.com/es/desvios_en_el_sistema_electrico_la_
vision_del_consumidor/

» Meteo For Energy. (2022). *Andlisis sobre los costes de desvio de las energias reno-
vables (Junio 2022)*. Recuperado de https://www.meteoforenergy.com/meteonew/
galeria/2022/Meteoblog/Costes\%20de\%20desvAno\%20de\%201as\%20energhnas\
%20renovables\%20-\%20Junio\%202022.pdf

* Miele, E. S., Ludwig, N., & Corsini, A. (2023). *Multi-Horizon Wind Power Forecasting

Using Multi-Modal Spatio-Temporal Neural Networks*. Energies, 16(8), 3522. Recupe-
rado de https://doi.org/10.3390/en16083522

56



Prediccién del volumen neto de los desvios E Universidad
Edgar Romero Depablos Europea

* OMIE (Operador del Mercado Ibérico de Energia). (s.f.). *Mercado intradiario conti-
nuo*. Recuperado de https://wuw.omie.es/es/mercados_y_productos/mercado_
intradiario_continuo

« Pearson, K. (1895). *Note on regression and inheritance in the case of two parents*.
Proceedings of the Royal Society of London, 58, 240—242.

* Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). *Cat-
Boost: unbiased boosting with categorical features*. arXiv preprint. Recuperado de
https://arxiv.org/abs/1706.09516

* Red Eléctrica de Espana. (2023). *Informe del sistema eléctrico espafol 2023*. Recu-
peradode https://www.ree.es/sites/default/files/07_SALA_PRENSA/Documentos/
2024/NP_CyL.pdf

* Red Eléctrica de Espana. (2024). *Resumen Servicios de ajuste*. Recuperado de https:
//www.sistemaelectrico\Yree.es/informe\%del\/sistema\electrico/mercados/

servicios\jajuste/resumen\¥%servicios\%ajuste

* Red Eléctrica de Espana. (2025, 18 marzo). *Informe del sistema eléctrico espafol
2024*. Recuperadode https://www.ree.es/sites/default/files/07_SALA_PRENSA/
Documentos/2025/NP_Madrid.pdf

* Red Eléctrica de Espana. (s.f.). *El sistema eléctrico espanol*. Recuperado de https:
//www.ree.es/es/operacion/sistema-electrico

» Sanz Munoz, J. (2023). *Prediccion de precios de la electricidad con neural ODE*
(Trabajo Fin de Méster). Universidad Pontificia Comillas. Recuperado de https://
repositorio.comillas.edu/jspui/bitstream/11531/75263/1/TFM\%20-\%20Sanz\
%20Munoz\%20Jaime . pdf

« Shapiro, S. S., & Wilk, M. B. (1965). *An analysis of variance test for normality (complete
samples)*. Biometrika, 52(3/4), 591-611. Recuperado de https://doi.org/10.1093/
biomet/52.3-4.591

» Taylor, S. J., & Letham, B. (2018). *Forecasting at scale*. The American Statistician,
72(1), 37—45. Recuperado de https://doi.org/10.1080/00031305.2017.1380080

 Trull Dominguez, J. (s.f.). *Prediccién a corto plazo de la demanda horaria de energia
eléctrica en Espana mediante modelos optimizados de Holt—-Winters multiple* (TFM).
Universidad de Sevilla. Recuperado de https://biblus.us.es/bibing/proyectos/

abreproy/72713/descargar_fichero/TFM-2713\%2BJAac

» Tukey, . W. (1977). *Exploratory Data Analysis*. Addison-Wesley.

57



Prediccion del volumen neto de los desvios

Universidad
Edgar Romero Depablos Europea
Capitulo 8. ANEXOS
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Anexo A
Serie Temporal Agrupada por Mes
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Figura 8.1. Serie mensual del volumen neto de desvios.
Fuente: Calculos propios.
Serie Temporal Agrupada por Trimestre
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Figura 8.2. Serie trimestral del volumen neto de desvios.
Fuente: Calculos propios.
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Figura 8.3. Serie semestral del volumen neto de desvios.
Fuente: Calculos propios.
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Figura 8.4. Serie anual del volumen neto de desvios.
Fuente: Célculos propios.
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Anexo B

Volumen Neto de Desvios (Mensual) - Afio 2017
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Figura 8.5. Serie mensual del volumen neto de desvios (2017).
Fuente: Calculos propios.

Volumen Neto de Desvios (Mensual) - Afio 2018
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Figura 8.6. Serie mensual del volumen neto de desvios (2018).
Fuente: Calculos propios.
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Figura 8.7. Serie mensual del volumen neto de desvios (2019).
Fuente: Calculos propios.
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Figura 8.8. Serie mensual del volumen neto de desvios (2020).
Fuente: Calculos propios.
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Figura 8.9. Serie mensual del volumen neto de desvios (2021).
Fuente: Calculos propios.
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Figura 8.10. Serie mensual del volumen neto de desvios (2022).
Fuente: Calculos propios.
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Figura 8.11. Serie mensual del volumen neto de desvios (2023).
Fuente: Calculos propios.
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Figura 8.12. Serie mensual del volumen neto de desvios (2024).
Fuente: Calculos propios.
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Anexo C

Heatmap: Dia de la Semana vs Hora (Volumen Nete Desvios) - Mes 1
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Figura 8.13. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Enero).
Fuente: Célculos propios.

Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 2
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Figura 8.14. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Febrero).
Fuente: Célculos propios.
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Heatmap: Dia de la Semana vs Hora {(Volumen Neto Desvios) - Mes 3
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Figura 8.15. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Marzo).
Fuente: Calculos propios.

Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 4
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Figura 8.16. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Abril).
Fuente: Calculos propios.
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Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 5
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Figura 8.17. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Mayo).
Fuente: Calculos propios.

Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 6
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Figura 8.18. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Junio).
Fuente: Calculos propios.
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Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 7
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Figura 8.19. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Julio).
Fuente: Calculos propios.

Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 8
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Figura 8.20. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Agosto).
Fuente: Calculos propios.
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Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 9
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Figura 8.21. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia
(Septiembre).
Fuente: Célculos propios.

Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 10
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Figura 8.22. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia (Octubre).
Fuente: Célculos propios.
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Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 11
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Figura 8.23. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia
(Noviembre).

Fuente: Célculos propios.

Heatmap: Dia de la Semana vs Hora (Volumen Neto Desvios) - Mes 12
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Figura 8.24. Mapa de calor del volumen neto de desvios promedio por dia de la semana y hora del dia
(Diciembre).
Fuente: Célculos propios.
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