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RESUMEN
Este proyecto de investigación presenta el desarrollo de un modelo predictivo enfocado en
el volumen neto de los desvíos generación/demanda del sistema eléctrico de España, con
el objetivo de minimizar penalizaciones mediante la participación correcta en dos mercados:
el continuo y el intradía. Cada mercado cuenta con un horizonte de predicción específico
adaptado a sus características operativas.

El propósito es proveer a las comercializadoras de energía una herramienta que ayude a
minimizar penalizaciones económicas relacionadas con los desequilibrios de sus compras.

Para ello se implementaron dos enfoques:

1. Modelo de predicción horaria: Se incorporaron variables exógenas (precio spot, pro-
ducción eólica, temperatura, velocidad del viento, insolación, días festivos ponderados)
y desvíos con un rezago de una hora. Este diseño fue evaluado mediante los algoritmos
CatBoost y Prophet.

2. Modelo multi-salida: Con las mismas variables exógenas y una transformación de
la variable objetivo para crear un dataframe con horizonte de 24 horas. La precisión
se valoró cuantitativamente (RMSE) y cualitativamente (acierto de tendencia mediante
matriz de confusión). Cabe destacar que fue evaluado con el modelo Catboost.

Los resultados muestran que, mientras el modelo de mercado continuo ofrece un rendimiento
comparable al uso exclusivo de desvíos rezagados, el enfoque multi-salida consigue un aho-
rro medio del 5 % en costes para para una comercializadora simulada, frente a estrategias
sin modelado. El proyecto incluyó ingesta de datos públicos (ESIOS, AEMET, web scraping),
análisis exploratorio, selección de variables y modelado estadístico y de machine learning en
Python.

Palabras clave: modelo predictivo, mercado de desvíos, red eléctrica, machine learning, Cat-
Boost, Prophet, web scraping.
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ABSTRACT
This research project presents the development of a predictive model focused on the net
volume of generation/demand deviations in the Spanish electrical system, aiming to minimize
losses through correct participation in two markets: the continuous and the intraday. Each
market has a specific forecasting horizon adapted to its operational characteristics.

The objective is to provide energy marketers with a tool that helps minimize economic penal-
ties related to the imbalances in their purchases and, consequently, contribute to the overall
stability of the electrical system.

Two approaches were implemented:

1. Hourly prediction model: Exogenous variables were incorporated (spot price, wind
power production, temperature, wind speed, solar radiation, weighted holidays) as well
as deviations with a one-hour lag. This design was evaluated using the CatBoost and
Prophet algorithms.

2. Multi-output model: Using the same exogenous variables and a transformation of the
target variable to create a dataframe with a 24-hour forecasting horizon. Accuracy was
assessed quantitatively (RMSE) and qualitatively (trend accuracy using a confusion ma-
trix). It is worth noting that this model was evaluated using CatBoost.

The results show that, while the continuous market model offers performance comparable
to the exclusive use of lagged deviations, the multi-output approach achieves an average
cost savings of 5 % for energy marketers compared to non-modeling strategies. The project
included the ingestion of public data (ESIOS, AEMET, web scraping), exploratory analysis,
variable selection, and statistical and machine learning modeling in Python.

Keywords: predictive model, deviation market, power grid, machine learning, CatBoost, Prophet,
web scraping.
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Capítulo 1. RESUMEN DEL PROYECTO
1.1 Contexto y justificación

En 2024, el coste de los servicios de ajuste en España alcanzó los 2 668 millones de euros,
un 7,5 % superior al del año anterior, lo que supone una carga significativa para los agentes
del mercado (Red Eléctrica de España, 2024).

Por otra parte, según Red Eléctrica de España (2025, 2024), el incremento en la producción
de energías renovables ha aumentado la variabilidad en la programación energética y ha ele-
vado el volumen (y coste) de los desvíos. En 2024, las renovables representaron el 56,8 %
del mix eléctrico (Red Eléctrica de España, 2025) y el coste de los servicios de ajuste (indica-
dor de penalizaciones por desvíos) alcanzó los 2 668 MC, un 7,5 % más que el año anterior
(Red Eléctrica de España, 2024).

Por lo tanto, generar un modelo que permita predecir los desvíos futuros ayudaría a las co-
mercializadoras a optimizar sus operaciones.

1.2 Planteamiento del problema

En el mercado eléctrico de España existen múltiples participantes que hacen posible su fun-
cionamiento. Uno de esos agentes son las comercializadoras, las cuales se encargan de
comprar la electricidad en el mercado y venderla a los consumidores (hogares y negocios).
No obstante, cuando la cantidad de electricidad comprada resulta muy diferente de la consu-
mida, se genera un desequilibrio en el sistema. Dicho desequilibrio se penaliza; es decir, todo
agente que contribuya a la discrepancia entre lo consumido y lo programado será penalizado
por el mercado para estabilizar el sistema (Conde Buezas, 2016).

Por lo tanto, predecir las desviaciones es fundamental para evitar pérdidas considerables de
las partes involucradas. No obstante, las predicciones en este ámbito resultan un desafío
técnico, dado que dependen de múltiples variables exógenas. Es importante resaltar que
algunas son más difíciles de obtener que otras (Filgueira Fernández, 2024).

Por otra parte, capturar las relaciones entre las variables exógenas y la variable dependiente
(volumen neto de los desvíos) puede ser complejo, ya que dichas relaciones pueden ser
no lineales. Por lo tanto, se requiere el uso de algoritmos de machine learning y modelos
estadísticos avanzados (López García, 2016).

1.3 Objetivos del proyecto

En esta investigación se busca comprender la importancia de prever el desvío del sistema de
forma que se adecúe la compra de energía a las distribuidoras, utilizando modelos estadísti-
cos y de machine learning. Para ello, se deben extraer, analizar y modelar distintas variables
independientes, con el propósito de explicar su relevancia en el fenómeno de estudio y mejo-
rar la precisión de los pronósticos.
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1.4 Resultados obtenidos

Esta investigación destacó la importancia de realizar múltiples análisis exploratorios para
identificar patrones en las variables. Al tratarse de un fenómeno temporal, la descomposición
de la fecha y hora permitió configurar componentes como año, mes y hora, que aportaron
significativamente a la precisión del modelo. Además, la realización de un análisis compara-
tivo (benchmark) entre distintos modelos fue crucial para obtener predicciones robustas sin
caer en sobreajuste. En términos cuantitativos, el modelo CatBoost obtuvo el mejor ajuste
con un RMSE ≈ 398.5 MWh y una precisión en la dirección del desvío (accuracy de signo)
del 84.4 %, frente al baseline (dummy 1 h) que presentó un RMSE de 424.3 MWh. Prophet
alcanzó un RMSE ≈ 408.7 MWh (accuracy 84.2 %) y el ensamblado híbrido consiguió un RM-
SE intermedio ≈ 402.2 MWh (accuracy 84.37 %). El modelo multisalida, útil para pronosticar
24 h de forma directa, mostró un RMSE promedio ≈ 952.0 MWh y una accuracy global del
66 %, indicando pérdida de precisión en horizontes largos. Finalmente, la simulación econó-
mica basada en las predicciones reveló un ahorro absoluto de 104 889.48 EUR, equivalente
a una reducción del 4.86 % en costes de penalización frente a una estrategia de compra fija.

1.5 Estructura de la memoria

El presente documento incluye un breve resumen de la investigación, explicando sus compo-
nentes y el motivo que generó este trabajo. Además, se presentan cada uno de los objetivos
y una descripción detallada de cómo se alcanzaron. Por último, se exponen los resultados
obtenidos, las conclusiones y las posibles mejoras.
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Capítulo 2. ANTECEDENTES / ESTADO DEL AR-
TE
2.1 Estado del arte

En esta sección se exponen una serie de trabajos que anteceden este proyecto. Dichas in-
vestigaciones proporcionan una visión general de la problemática planteada en este trabajo y
explican los avances logrados hasta la fecha. Además, se puede evidenciar las oportunidades
de mejora y los beneficios que aporta esta investigación.

Cabe destacar que, para lograr este análisis del estado del arte, se revisaron una serie de
fuentes oficiales como ScienceDirect y MDPI, aplicando palabras clave como forecasting,
machine learning y electricity.

2.1.1. Modelos avanzados de machine learning y enfoques híbridos

Al Mamun et al. (2017) describen en su investigación la importancia de elegir cuidadosamente
los diferentes factores que pueden afectar la precisión de un modelo de predicción de carga
eléctrica, como lo son el tiempo, el clima y la economía. Por otra parte, mencionan que el
uso de modelos híbridos como el SVM-BFGSA, entre otros, puede mejorar la precisión de las
predicciones al integrar la fuerza de diferentes técnicas.

En adición, se comenta que las diferentes métricas de evaluación como RMSE y el MAPE
son fundamentales para determinar el modelo más adecuado para el fenómeno de estudio.
Además, el uso de diferentes modelos según el horizonte temporal requerido permite adaptar
las técnicas a las necesidades específicas de cada sistema eléctrico.

En conclusión, el análisis de las variables exógenas y el uso de algoritmos robustos que
permitan capturar relaciones no lineales puede ser de gran utilidad en esta investigación. De
acuerdo con Al Mamun et al. (2017), los modelos de machine learning como el SVM-BFGSA
mostraron una reducción del 9.63 % en el MAPE en comparación con el modelo ARIMA.
Por lo tanto, es pertinente considerar aplicar técnicas avanzadas como el algoritmo CatBoost
para la predicción del volumen neto de los desvíos, además, una combinación de modelos de
machine learning y estadísticos podría generar un modelo aún más eficiente y robusto, como
sugieren los autores.

2.1.2. Modelos estadísticos clásicos

En las zonas insulares de España, como las Islas Canarias y Baleares, Caro y Juan (2020)
desarrollaron un modelo de serie temporal ARIMAX para realizar pronósticos horarios de
la demanda de energia eletrica (MW) con un horizonte de un día. Dicho modelo considera
factores como la temperatura y los días festivos, con el propósito de adaptarse a cada sistema
insular.
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En su investigación, los autores compararon los resultados con un software de pronósticos
utilizado por la Red Eléctrica de España (REE). Por otra parte, emplearon métricas como el
error porcentual absoluto medio (MAPE) para evaluar la precisión de los modelos y la prueba
de Diebold-Mariano para comparar la precisión de los modelos desarrollados con el software
de referencia utilizado por REE.

Como señalan Caro y Juan (2020) en sus conclusiones, los modelos desarrollados son más
precisos que el software de referencia, con mejoras considerables en las Islas Baleares. La
hora y la temperatura tienen un efecto notable en dichas mejoras; es decir, considerar este
tipo de variables en la investigación puede ser beneficioso para la precisión de los modelos.

En conclusión, dicho proyecto resulta beneficioso para esta investigación, dado que indica
que los modelos estadísticos pueden generar buenos pronósticos en el sector energético y,
además, si utilizamos las variables exógenas correctas, se puede aportar considerablemente
al sector y a todas las partes involucradas.

2.1.3. Modelos estadísticos avanzados

Sanz Muñoz (2023) estudia la predicción de precios en el mercado diario de la electricidad de
España durante el periodo 2018-2019 mediante la configuración y comparación de un con-
junto de modelos, entre ellos el modelo Prophet en versiones univariantes y multivariantes.

El modelo Prophet en su versión multivariante incorporó variables exógenas como la deman-
da P48, la generación eólica P48 y el día de la semana, logrando el mejor MAE de todos
los modelos (2,652 C/MWh). Esto demuestra la importancia de integrar variables exógenas
en un modelo de series temporales para mejorar la precisión del mismo, al capturar de una
mejor manera la estacionalidad y otros patrones.

Se puede concluir que el modelo Prophet resulta de gran utilidad para predecir valores re-
lacionados con el sector energético, donde se pueden encontrar patrones cambiantes en la
estacionalidad y es frecuente la presencia de valores atípicos.

2.1.4. Modelos de machine learning multi-salida

Miele, Ludwig y Corsini (2023) comentan en su investigación que la predicción multi-horizonte
es de vital importancia porque permite anticipar varias horas futuras de una misma señal,
apoyando de esa manera decisiones de operación y compra. Por consiguiente, los autores
estudian este problema en el contexto de la potencia eólica a nivel de turbina, señalando que
la variabilidad del viento y la necesidad de precisión exigen pronósticos de muchas horas
adelante para planificar mantenimiento, despacho y coordinación con otros recursos.

La variable objetivo es la potencia activa generada por cada turbina, con una periodicidad
horaria, y se busca poder predecir las siguientes 90 horas desde cada momento de partida.
Para ello, se elabora un conjunto de datos donde cada registro contiene el historial reciente
de la turbina, junto con las variables de salida correspondientes a cada intervalo de tiempo
con horizonte de 90 horas (Miele, Ludwig & Corsini, 2023).
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Cabe destacar que el conjunto de variables explicativas proviene de SCADA (Supervisory
Control And Data Acquisition) y NWP (Numerical Weather Prediction). SCADA proporciona
datos internos del equipo, como potencia instantánea, temperaturas internas y externas, vi-
braciones, entre otros indicadores de estado y rendimiento. Por otra parte, NWP proporciona
valores como velocidad y dirección del viento, temperatura, presión y humedad en distintos
niveles de la atmósfera y ubicaciones geográficas (Miele, Ludwig & Corsini, 2023).

El modelo utilizado para llevar a cabo esta investigación fue una red neuronal multimodal
espaciotemporal basada en LSTM, utilizando métricas para evaluar los pronósticos, como el
RMSE, el MAE y un skill score que mide la mejora porcentual frente a modelos base, como
la regresión lineal. Los resultados obtenidos por Miele, Ludwig y Corsini (2023) indican que el
error crece con el horizonte y reportan un skill score medio cercano al 25 % sobre el modelo
base.

En conclusión, esta investigación deja un precedente en la importancia de usar modelos
multi-salida en combinación con variables exógenas, señalando no solo su eficacia, sino la
metodología para llevar a cabo este tipo de proyectos, desde la transformación de los datos
hasta la forma de evaluar la precisión del modelo.

2.2 Contexto y justificación

En el sistema eléctrico español, las comercializadoras son las encargadas de comprar ener-
gía a las empresas generadoras en los mercados diarios e intradiarios, con el propósito de
suministrarles a los consumidores, como los hogares y empresas, energía de manera cons-
tante según sus necesidades. Cuando la energía consumida difiere de lo programado, se
genera una discrepancia entre la generación y la demanda. Dicha diferencia genera un des-
equilibrio en el sistema eléctrico (CNMC, 2019).

Por lo tanto, la entidad responsable de mantener el sistema eléctrico en óptimas condiciones
(REE) debe corregir mediante penalizaciones en el mercado de desvíos. Dichas penaliza-
ciones generan pérdidas económicas considerables a las comercializadoras y a todo agente
responsable que contribuya con el desequilibrio.

Es importante resaltar que, en 2024, el coste de los servicios de ajuste en España alcanzó
los 2 668 millones de euros, un 7,5 % superior al del año anterior, lo que supone una carga
significativa para los agentes del mercado (Red Eléctrica de España, 2024).

Además, según Red Eléctrica de España (2024, 2025), el incremento en la producción de
energías renovables ha aumentado la variabilidad en la programación energética y ha elevado
el volumen (y coste) de los desvíos. En 2024, las renovables representaron el 56,8 % del mix
eléctrico (Red Eléctrica de España, 2025).

En conclusión, el desarrollo de un modelo predictivo capaz de pronosticar el volumen neto
de los desvíos es de vital importancia para todos los agentes involucrados, debido a que,
con esa información, serán capaces de evitar penalizaciones en el mercado de desvíos y,
como consecuencia, se producirá un equilibrio duradero en el sistema eléctrico, lo cual podría
generar mejores precios para los consumidores y un servicio de mejor calidad.
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2.3 Planteamiento del problema

Se ha evidenciado que el sistema eléctrico español está compuesto por múltiples agentes,
desde los que generan la energía hasta los consumidores. Uno de ellos son las comercializa-
doras, agentes encargados de adquirir energía en el mercado energético (diario, intradiario
y de desvíos) para poder suministrarla de forma eficiente a los diferentes tipos de consu-
midores. En este sistema, cuando las comercializadoras adquieren un volumen de energía
diferente al realmente consumido, se genera un desvío que pone en desequilibrio todo el sis-
tema. Por lo tanto, el agente encargado debe corregir dicho desequilibrio, y el método para
hacerlo es a través del mercado de desvíos, donde los distintos agentes que presentaron
desviaciones pueden comprar o vender según el caso, a un precio desfavorable para ellos
debido a una estimación incorrecta de sus previsiones (CNMC, 2019).

Es importante tener en cuenta que un sistema eléctrico en óptimas condiciones genera bene-
ficios para todos los agentes involucrados, lo cual no solo favorece a las comercializadoras,
sino a todo el sector, incluidos los consumidores.

No obstante, a pesar de existir una cantidad considerable de investigaciones relacionadas
con la demanda y la generación de energía por separado, son escasos los proyectos que
específicamente evalúan el volumen neto de los desvíos (generación/demanda). Esto puede
evidenciarse en la investigación de Caro y Juan (2020), donde, al desarrollar un modelo ARI-
MAX, lograron pronosticar la demanda de los sistemas insulares españoles con un RMSE
satisfactorio. Además, Al Mamun et al. (2017) evaluaron un conjunto de técnicas predictivas
individuales e híbridas, obteniendo resultados competitivos, pero ninguno de estos proyectos
se enfocó en el pronóstico del volumen neto de los desvíos.

En trabajos de investigación recientes, Sanz Muñoz (2023) ejecutó el modelo Prophet, incor-
porando variables exógenas como la demanda P48, la generación eólica P48 y el día de la
semana, con el propósito de predecir el precio del mercado diario español, obteniendo un
MAE considerablemente bajo. Esto demuestra la utilidad de dicho modelo y su capacidad
predictiva al incorporar regresores externos. Sin embargo, este proyecto tampoco evaluó el
volumen de los desvíos, sino el precio de la energía.

Por lo tanto, en esta investigación se plantea desarrollar un modelo predictivo capaz de apor-
tar una solución a esta problemática, permitiendo que las comercializadoras puedan mitigar
sus pérdidas y que el sistema en general alcance intervalos de equilibrio más prolongados.
Para ello, se evaluarán dos modelos con algoritmos completamente distintos, pero igual de
eficaces. Dichos modelos se entrenarán y evaluarán con un histórico de datos del volumen
neto de los desvíos desde 2015 hasta 2024.

2.4 Marco teórico

2.4.1. Sistema eléctrico

El sistema eléctrico se puede comprender como el conjunto de infraestructuras y procesos
que garantizan la generación, transporte, distribución y suministro de electricidad, con el pro-
pósito de satisfacer la demanda de energía en todo momento (Red Eléctrica de España, s.f.).
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Cabe destacar que en España coexisten varios subsistemas, tales como: Peninsular, Balea-
res, Canarias, Ceuta y Melilla. Sin embargo, el más grande es el subsistema peninsular, el
cual está interconectado con países vecinos y registra una generación de energía que su-
peró los 248 478 GWh en 2024 (Red Eléctrica de España, 2024). Por consiguiente, el siste-
ma requiere la interacción de múltiples agentes y mercados para mantener el equilibrio entre
generación y demanda de forma segura y eficiente (Red Eléctrica de España, s.f.).

2.4.2. Agentes del sistema eléctrico

(Fundación Endesa, s.f.) identifica los siquientes agentes principales del sistema:

. Generadores: instalan, operan y mantienen centrales de generación eléctrica (térmi-
cas, hidráulicas, renovables, etc.), y participan informando sus ofertas de cantidad y
precio al mercado.

. Productores en régimen especial: tipología de generadores sujetos a tratamientos
económicos o regulatorios específicos por eficiencia o impacto ambiental.

. Transportistas: gestionan la red de transporte de alta tensión, trasladando la ener-
gía desde los centros de generación hasta las redes de distribución, garantizando la
capacidad y seguridad de la transmisión.

. Distribuidores: operan y mantienen la red de media y baja tensión, llevando la electri-
cidad hasta el punto de consumo y gestionando infraestructuras de distribución.

. Comercializadores: empresas que adquieren electricidad en los mercados mayoristas
y la venden a consumidores finales, asumiendo la contratación y gestión de precios.

. Consumidores calificados: usuarios con un volumen de consumo que les otorga par-
ticipación directa en el mercado mayorista.

. Operador del sistema: en España, Red Eléctrica de España (REE) actúa como ope-
rador del sistema de transporte (TSO), responsable de la gestión técnica del sistema,
coordinación continua de la red y mantenimiento del equilibrio entre generación y de-
manda (Fundación Endesa, s.f.; Red Eléctrica de España, s.f.).

. Operador del mercado: gestiona la casación de ofertas y demandas para determinar
los precios horarios; en el mercado diario OMIE (Operador del Mercado Ibérico de
Energía) cumple esta función.

. Reguladores: la Administración del Estado y la Comisión Nacional de los Mercados
y la Competencia (CNMC) establecen y supervisan marcos regulatorios, metodologías
de funcionamiento de mercados y liquidaciones (CNMC, 2019).
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2.4.3. Mercados del sistema eléctrico

Los mercados eletricos se organizan en diferentes tipos para permitir la compra y venta de
energia en distintos horizontes temporales y de esa forma gestionar el balance en tiempo real
(CNMC, s.f.; Fundación Endesa, s.f.).

. Mercados a plazo: contratos bilaterales o subastas a futuro para cubrir volúmenes con
antelación.

. Mercado diario: casación de ofertas de compra y venta para cada una de las 24 horas
del día siguiente. Todas las unidades de generación disponibles participan obligato-
riamente, y el precio resultante es marginalista, beneficiando la eficiencia del sistema
(Fundación Endesa, s.f.; Endesa, 2025).

. Mercado intradiario: permite ajustes tras el cierre del mercado diario, organizándose
en varias sesiones donde generadores y comercializadoras corrigen posiciones según
nueva información de demanda o disponibilidad.

. Mercado continuo: es un segmento dentro del mercado intradiario en el cual se per-
mite la negociación en tiempo casi real, mediante un sistema de casación continua, a
diferencia del mercado diario y de las sesiones intradiarias que funcionan por subas-
ta. En este mercado, los agentes pueden modificar sus previsiones de generación o
demanda y ajustar sus posiciones comerciales conforme se acercan a la hora real de
entrega, permitiendo una mayor flexibilidad operativa (OMIE, s.f.).

. Mercados de servicios complementarios o de balance: incluyen mecanismos para
resolver desequilibrios en tiempo real o casi real. Dentro de estos está el llamado “mer-
cado de desvíos” o “servicios de ajuste”, donde se compensan las diferencias entre la
energía programada y la realmente inyectada o consumida para mantener el equilibrio
técnico del sistema (CNMC, 2019; Fundación Endesa, s.f.).

2.4.4. Equilibrio técnico y estabilidad del sistema eléctrico

“El equilibrio instantáneo entre la electricidad generada y la demandada es imprescindible,
ya que cualquier diferencia podría comprometer la estabilidad de la red. Para garantizar este
balance, el operador del sistema (REE) monitoriza en tiempo real los flujos eléctricos, acti-
va reservas y utiliza mecanismos de ajuste para absorber desviaciones” (Red Eléctrica de
España, s.f.).

2.4.5. Servicios de ajuste o servicios complementarios

"Los servicios de ajuste o complementarios permiten al operador del sistema mantener la
calidad del suministro eléctrico y compensar rápidamente desviaciones imprevistas. Entre
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ellos se encuentran la regulación secundaria (respuesta en segundos), la terciaria (respuesta
en minutos) y los servicios de gestión de restricciones técnicas"(REE, s.f.).

2.4.6. Responsabilidad del equilibrio

"La normativa española y europea establece que todos los agentes participantes en el siste-
ma eléctrico son responsables de mantener su propio equilibrio entre inyecciones y extrac-
ciones de energía, debiendo asumir las consecuencias económicas de los desvíos"(CNMC,
2019).

2.4.7. Desvíos del sistema eléctrico

El desvío en el sistema eléctrico se puede definir como la diferencia entre la energía medida y
la energía programada en el mercado. Desde la perspectiva del agente generador, el cálculo
de los desvíos es igual a la energía medida en barras de central menos la energía programada
en el horario de liquidación (MagnusCMD, s.f.).

Desvío = Energía medida − Energía programada

Por otra parte, se puede mencionar que los desvíos generan obligaciones de pago o de-
rechos de cobro con el operador del sistema (REE), independientemente del operador de
mercado (OMIE), y se liquidan mediante mecanismos específicos. Cabe destacar que la ges-
tión de desvíos es crítica porque las penalizaciones o recompensas afectan directamente la
rentabilidad de generadores y comercializadoras. En adición, contribuyen a la estabilidad del
sistema eléctrico al incentivar comportamientos que reduzcan desequilibrios (MagnusCMD,
s.f.).

2.4.8. Liquidación de desvíos y precio de desvío

La liquidación de los desvíos está regulada por el Procedimiento Operativo PO-14.4 de Red
Eléctrica de España, en el cual los precios de desvío se calculan de forma marginalista para
cada período de liquidación (Red Eléctrica de España, s.f.). En detalle:

• Desvíos a subir: si un agente inyecta menos energía de la programada, paga la diferencia
al precio marginal de “desvíos a subir” publicado por el operador del sistema (Red Eléctrica
de España, s.f.).

• Desvíos a bajar: si inyecta más energía de la programada, recibe la diferencia al precio
marginal de “desvíos a bajar” (Red Eléctrica de España, s.f.).

Este mecanismo tiene en consideración la situación del sistema en cada momento y el volu-
men concreto desviado. Por lo tanto, la penalización o compensación varía según el contexto
operativo y no es uniforme para todos los agentes (Red Eléctrica de España, s.f.).
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2.4.9. Fundamentos de series temporales

La predicción de los desvíos de la red eléctrica se encuentra dentro del análisis de series
temporales, donde es pertinente comprender la estructura de dichas series. Hyndman, R.
J., & Athanasopoulos, G. (2018) comentan que la estructura se conforma por la tendencia,
estacionalidad y ruido. Además, entender las propiedades, como si la serie es estacionaria,
presenta autocorrelación y si se distribuye normal.

Para poder determinar las propiedades antes mencionadas, se pueden aplicar las siguientes
pruebas:

. Pruebas de estacionariedad: se emplea, entre otros, el test de Dickey-Fuller aumen-
tado (ADF) para evaluar si la serie tiene raíz unitaria (Dickey & Fuller, 1979). Una serie
no estacionaria puede requerir diferenciación o transformaciones antes de modelar.

. Autocorrelación y correlación parcial: el análisis de ACF/PACF y pruebas como
Ljung-Box ayudan a identificar dependencia temporal y retardos relevantes (Box, Jen-
kins, Reinsel, & Ljung, 2015).

. Normalidad de residuos o de variables: tests como Shapiro-Wilk o Kolmogórov-
Smirnov informan si la distribución de errores o de la variable se ajusta a normalidad,
aunque muchos métodos de machine learning no exigen normalidad estricta, conocer
la distribución ayuda a entender riesgos extremos (Shapiro & Wilk, 1965).

2.4.10. Modelo Prophet

Prophet es un modelo estadístico, el cual se basa en un modelo aditivo para series tempora-
les, descomponiendo la observación en componentes de tendencia, estacionalidad, efectos
de días festivos y ruido (Taylor & Letham, 2018):

y(t) = g(t) + s(t) + h(t) + εt

donde:

• g(t) es la función de tendencia,
• s(t) modela la estacionalidad,
• h(t) representa los efectos de días festivos o eventos,
• εt es el término de error (ruido), asumido con media aproximadamente cero.

1. Tendencia: g(t)

Prophet admite principalmente dos tipos de tendencia: lineal con puntos de cambio (piecewise
linear) o logística. En el caso lineal con cambios de pendiente en tiempos {tc}, se define:
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g(t) =

k +

S∑
j=1

δjaj(t)

 (t− t0) +

m+

S∑
j=1

γjaj(t)


donde:

• k es la pendiente inicial,
• m es la intersección inicial,
• {tc}Sj=1 son los tiempos de cambio (changepoints),

• aj(t) =

{
1, si t > tcj

0, si t ≤ tcj
,

• δj es el cambio de pendiente en tcj ,
• Para mantener la continuidad de g(t), se ajusta el intercepto con γj = −tcjδj ,
• t0 es un punto de referencia temporal (por ejemplo, el tiempo inicial).

La estimación de δj se realiza con regularización bayesiana (Bayesian prior ) para evitar un
exceso de cambios de pendiente y sobreajuste (Taylor & Letham, 2018).

En la versión logística, la tendencia se define como:

g(t) =
C

1 + exp(−k(t−m))

o en una forma análoga con changepoints.

2. Estacionalidad: s(t)

La estacionalidad se modela mediante series de Fourier para capturar patrones periódicos
(diarios, semanales, anuales). Por ejemplo, para una estacionalidad de período P , se utiliza
la siguiente representación:

s(t) =

N∑
n=1

[
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

)]

donde:

• P es el período de la estacionalidad (por ejemplo, P = 24 para estacionalidad diaria u
P = 7 para estacionalidad semanal),

• N es el número de términos (orden) de la serie de Fourier, que controla el grado de
complejidad capturado,

• an y bn son los coeficientes de la serie, estimados junto con el resto de parámetros del
modelo,

• La estimación puede realizarse minimizando la función de pérdida o mediante inferencia
bayesiana aproximada (Taylor & Letham, 2018).
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3. Efectos de días festivos: h(t)

Los efectos de días festivos se incorporan como regresores binarios o mediante ventanas
de influencia. Si D es el conjunto de fechas festivas, se define para cada festivo d ∈ D un
indicador:

Dd(t) =

{
1, si t coincide o está en una ventana alrededor de d

0, en otro caso

Entonces, el componente de festivos se modela como:

h(t) =
∑
d∈D

βdDd(t)

donde:

• Dd(t) es el indicador binario para el festivo d,
• βd es el coeficiente que cuantifica el impacto del festivo d sobre la serie,
• Estos regresores también pueden representar eventos especiales o campañas que al-

teren el comportamiento normal de la serie.

2.4.11. Modelo CatBoost

CatBoost es un algoritmo de gradient boosting sobre árboles de decisión que introduce inno-
vaciones para manejar variables categóricas y reducir el sesgo en el cálculo de gradientes
(Prokhorenkova et al., 2018). A continuación se exponen los fundamentos matemáticos del
boosting y las particularidades de CatBoost.

1. Fundamentos matemáticos del boosting

Gradient Boosting construye un modelo de forma aditiva, ajustando cada nuevo árbol a los
residuos del modelo anterior (Friedman, 2001). Formalmente, dada una función de pérdida
L, el procedimiento es el siguiente:

1. Se inicia con una predicción constante:

F0(x) = argmı́n
γ

N∑
i=1

L(yi, γ)

2. Para cada iteración m = 1, 2, . . . ,M :

• Se calculan los pseudo-residuos como el gradiente negativo de la función de pér-
dida:

r
(m)
i = − ∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F=Fm−1
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• Se ajusta un nuevo árbol de regresión hm(x) para predecir los pseudo-residuos
r
(m)
i .

• Se actualiza el modelo:

Fm(x) = Fm−1(x) + η · hm(x)

donde η ∈ (0, 1] es la tasa de aprendizaje, que controla cuánto contribuye cada
nuevo árbol.

En el caso particular de pérdida cuadrática:

L(y, F ) =
1

2
(y − F )2

los pseudo-residuos son simplemente:

r
(m)
i = yi − Fm−1(xi)

Para funciones de pérdida genéricas (como log-loss para clasificación), se utilizan los gra-
dientes y en algunos algoritmos como XGBoost también los hessianos (segunda derivada)
para construir los splits de los árboles (Chen & Guestrin, 2016).

2. Particularidades de CatBoost

. Ordered Boosting: evita el target leakage al tratar variables categóricas. En lugar de
usar toda la muestra para calcular estadísticas como medias condicionales, CatBoost
utiliza permutaciones internas y estima las estadísticas en orden aleatorio. Esto reduce
el sesgo en los gradientes durante el entrenamiento y mejora la generalización del
modelo (Prokhorenkova et al., 2018).

. Árboles simétricos: cada árbol es construido de forma que todos los splits a una
misma profundidad usan la misma característica. Esta estructura acelera la predicción,
facilita la paralelización y estabiliza el modelo al reducir la varianza.

. Regularización interna: el modelo incluye hiperparámetros como depth (profundidad
del árbol), learning_rate (tasa de aprendizaje) y l2_leaf_reg (equivalente al pa-
rámetro λ en la regularización de las hojas), que ayudan a controlar el sobreajuste y
mejorar el rendimiento fuera de muestra.

. Manejo nativo de variables categóricas: CatBoost procesa internamente las varia-
bles categóricas mediante codificaciones basadas en estadísticas relativas a la varia-
ble objetivo, por lo que no es necesario aplicar una codificación manual tipo one hot
encoding que aumente mucho la dimensionalidad del conjunto de datos. Esto simplifica
el preprocesado, reduce el riesgo de errores por transformación y permite aprovechar
la información de las categorías de forma más directa y eficiente (Prokhorenkova et al.,
2018).
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2.4.12. Modelos híbridos y combinación de pronósticos

La combinación de pronósticos busca mejorar precisión al aprovechar fortalezas complemen-
tarias de modelos distintos (Clemen, 1989).Se puede mencionar que al combinar Prophet
(fuerte en capturar tendencia/estacionalidad) y CatBoost (fuerte en no linealidades y exóge-
nas) mediante ponderación basada en errores históricos, se puede reducir sesgos de cada
modelo y mejorar la precisión de los pronósticos.

Métodos de combinación: ponderación lineal de predicciones:

ŷ = w1ŷProphet + w2ŷCatBoost

con pesos wi determinados por inversa de RMSE en validación o mediante optimización (e.g.,
mínimos cuadrados).

Ventajas:

• puede mejorar robustez y generalización;
• mitiga fallos cíclicos de uno u otro modelo en ciertas condiciones.

2.4.13. Enfoque multi-salida con CatBoost

Para predecir 24 horas futuras de desvíos, se pueden usar:

. Modelos independientes: un CatBoost por cada horizonte h, minimizando∑
i

L(yi,t+h, Fh(xi)).

Esto ignora correlaciones entre horas.

. Modelo “horizonte como feature”: reformular el problema como un dataset “aplana-
do”: cada fila es un par (xi, h) y objetivo yi,t+h. Entonces se entrena un único modelo
F (x, h) que capta información compartida entre horizontes (Hyndman & Athanasopou-
los, 2018).

. Multi-output directo: si la librería o un wrapper lo permite, entrenar un solo CatBoost
que devuelva un vector de 24 predicciones simultáneas, aprovechando correlaciones
entre outputs.
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2.4.14. Métricas de error en forecasting

Root Mean Squared Error (RMSE) mide la raíz cuadrada del promedio de los errores al
cuadrado entre valores reales yi y predicciones ŷi:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2.

Es sensible a errores grandes debido al cuadrado de la desviación y se expresa en las mismas
unidades de la variable de interés (Hyndman & Athanasopoulos, 2018).

Symmetric Mean Absolute Percentage Error (SMAPE) valora el error porcentual simétrico
y mitiga el sesgo cerca de cero:

SMAPE =
100%

n

n∑
i=1

|yi − ŷi|
1
2

(
|yi|+ |ŷi|

) .
Penaliza por igual sobre- y subestimaciones y resulta útil cuando los valores reales pueden
ser cercanos a cero (Hyndman & Athanasopoulos, 2018).

2.4.15. Métricas de clasificación de tendencia

Para evaluar la capacidad del modelo de predecir la dirección del desvío (positivo/negativo),
se utiliza la matriz de confusión:

Predicción Positiva Predicción Negativa
Real Positiva Verdaderos Positivos (VP) Falsos Negativos (FN)
Real Negativa Falsos Positivos (FP) Verdaderos Negativos (VN)

De ella se derivan numerosas métricas de rendimiento (precisión, exhaustividad, F1, etc.)
(Hastie et al., 2009).

Precisión se define como la proporción de predicciones correctas (tanto positivas como ne-
gativas) sobre el total de observaciones:

Precisión =
VP+VN

VP+ FP + FN+VN
.

Aunque intuitiva, puede resultar engañosa en casos de clases muy desbalanceadas (Hastie
et al., 2009).
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Capítulo 3. OBJETIVOS
3.1 Objetivos generales

El objetivo general del presente Trabajo Fin de Máster consiste en desarrollar e implementar
un modelo predictivo del volumen neto de los desvíos generación/demanda en la red eléc-
trica peninsular española, mediante la comparación de un algoritmo de machine learning
(CatBoost) y un modelo de series temporales (Prophet) con variables exógenas, con el fin de
optimizar la estrategia de compra y venta en el mercado intradiario y minimizar las penaliza-
ciones económicas asociadas a los desequilibrios.

3.2 Objetivos específicos

• Realizar análisis exploratorio de datos, a nivel univariante, para comprender las prin-
cipales características de la serie temporal objetivo, y, por otra parte, realizar análisis
multivariante con las potenciales variables exógenas para detectar el grado de correla-
ción entre las variables, patrones y tendencias.

• Implementar un modelo de boosting (CatBoost) y un modelo de series temporales
(Prophet), incorporando las variables más significativas, y, además, descifrar el me-
jor conjunto de hiperparámetros de cada modelo, mediante grid-search y validación
cruzada de series temporales.

• Comparar el RMSE obtenido de cada modelo con el conjunto de validación, después
de obtener el mejor conjunto de hiperparámetros para cada modelo mediante la optimi-
zación con el conjunto de train. Finalmente, poner en producción el mejor modelo para
este estudio y evaluar con el conjunto de test su desempeño.

3.3 Beneficios del proyecto

Este proyecto aporta a las comercializadoras una herramienta predictiva capaz de anticipar
con alta precisión el volumen neto de los desvíos generación/demanda en la red eléctrica
peninsular. Con ella, los agentes podrán ajustar proactivamente sus posiciones en el mercado
intradiario, minimizando las penalizaciones asociadas a desequilibrios.

Además, al aplicar los ajustes necesarios en el mercado intradiario de forma proactiva, los
agentes participantes contribuyen a mantener la estabilidad del sistema eléctrico, lo que re-
fuerza su seguridad.
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Capítulo 4. DESARROLLO DEL PROYECTO
4.1 Planificación del proyecto

Nº Actividad Inicio Fin Dur. (horas)
1 Revisión del estado del arte 01-04-2025 05-04-2025 10
2 Recopilación y unificación de datos 06-04-2025 28-04-2025 40
3 Preprocesamiento y limpieza 29-04-2024 04-05-2025 10
4 Ingeniería de variables 05-05-2024 19-05-2025 20
5 Implementación de modelos 20-05-2024 25-05-2025 10
6 Validación y optimización 26-05-2024 30-05-2025 10
7 Evaluación y análisis económico 31-05-2024 04-06-2025 10
8 Redacción final y defensa 05-06-2024 02-09-2025 40

Tabla 4.1. Cronograma de actividades y esfuerzo del proyecto

• Revisión del estado del arte: Búsqueda y análisis crítico de proyectos e investiga-
ciones relacionados con modelos de machine learning y modelos estadísticos, cuyo
objetivo es el pronóstico de series temporales asociadas a la red eléctrica.

• Recopilación y unificación de datos: Descarga de series temporales de la red eléc-
trica, datos meteorológicos y datos de los días festivos del país. Cálculo de medias
ponderadas de dichos datos por población para obtener una medida general a nivel
nacional.

• Preprocesamiento y limpieza: Imputación de valores faltantes, unificación de datos y
detección de valores atípicos.

• Ingeniería de variables: Generación de regresores temporales (hora, estación), agre-
gación de variables meteorológicas y análisis univariantes y multivariantes para detectar
patrones en las series temporales.

• Implementación de modelos: Desarrollo de pipelines CatBoost y Prophet con inclu-
sión de variables exógenas.

• Validación y optimización: Validación “walk-forward” y búsqueda de hiperparámetros
por grid-search respetando el orden temporal.

• Evaluación de los modelos: Cálculo del RMSE de los modelos y estimación del volu-
men neto de los desvíos, con análisis de costes por penalizaciones.

• Redacción final y defensa: Escritura de capítulos, revisión ortográfica y preparación
de la presentación de defensa.

4.2 Descripción de la solución, metodologías y herramientas em-
pleadas

4.2.1. Recopilación de datos

Para construir el conjunto de datos necesario para entrenar y evaluar los modelos predictivos,
se reunieron las siguientes fuentes, cubriendo el mismo horizonte temporal (01-01-2015 a 30-
11-2024) para cada variable:
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• Datos de desvíos, generación eólica y precio diario: descargados manualmente
desde el portal ESIOS de Red Eléctrica de España, usando la funcionalidad de expor-
tación a CSV que ofrece la interfaz web (REE, 2024).

• Variables meteorológicas (temperatura, horas de insolación): obtenidas vía API
del portal de datos abiertos de AEMET, mediante consultas automáticas que devolvían
series horarias por provincia (AEMET, 2024).

• Días festivos: extraídos mediante web-scraping de los calendarios laborales provincia-
les y nacionales (CalendariosLaborales, 2024), asignando un indicador binario y pon-
derado por población.

• Población por provincia: descargada en formato CSV desde la web del Instituto Na-
cional de Estadística (INE, 2024)), para calcular medias ponderadas de las variables
climáticas.

A continuación se describen con más detalle los procedimientos de extracción y unificación:

1. ESIOS (desvíos, eólica, precio) Los datos horarios se obtuvieron manualmente selec-
cionando el rango de fechas deseado y pulsando “Exportar CSV” en el portal de ESIOS. De
este modo se aseguró una descarga completa y homogénea de todas las series: desvíos ne-
tos de generación/demanda, previsión eólica y precios del mercado diario (REE, 2024). Cada
serie se exportó y guardó en un fichero separado.

A continuación, se verificó la integridad y coherencia de los datos. Al importar los ficheros en
Python, se realizó una inspección inicial de cada DataFrame, detectándose inconsistencias
debidas a cambios de hora (horario de verano/invierno) que provocaban saltos temporales.
Para corregirlo, la columna de fecha y hora se normalizó eliminando la información de zona
horaria y convirtiendo todas las marcas temporales a UTC, garantizando así una referencia
única y continua para el análisis.

2. API AEMET (clima) Utilizando la librería requests de Python, se desarrolló un script
que, para cada provincia española, consultaba la API de AEMET y extraía la temperatura
media diaria y las horas de insolación. Cada respuesta JSON se parseaba y volcaba a un
DataFrame de pandas.

A continuación, estos archivos se cargaron en Python para inspeccionar la calidad de los
datos. Como se debía combinar esta información con la población provincial, se acordó usar
como clave de unión el nombre de la provincia y el año. Para ello, primero se estandarizó el
campo provincia: todos los nombres se convirtieron a minúsculas, sin espacios ni caracte-
res especiales. Este mismo criterio de limpieza se aplicó más adelante a otros conjuntos de
variables.

Durante la inspección se detectaron valores faltantes en las columnas de temperatura media
e insolación. Para cuantificar el problema, se calculó el porcentaje de NaN en cada serie. En
el caso de temperatura, los valores ausentes eran escasos y dispersos, por lo que se resolvió
imputándolos con el valor inmediatamente anterior (forward-fill), es decir:

T (t) = T (t− 1).
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Para la variable de insolación, varios intervalos de tiempo carecían por completo de datos en
ciertas provincias, por lo que el método forward-fill no era adecuado. En este caso, cada NaN

se reemplazó por el promedio de las demás provincias en esa misma fecha. Si en la fecha t

había datos de insolación en 14 provincias y faltaban en 5, dichos cinco valores se imputaron
con la media calculada de las 14 provincias disponibles.

Una vez unificados los nombres y corregidos los valores faltantes, se creó una nueva columna
concatenando año y provincia limpia. Esta clave permitió fusionar el DataFrame meteoroló-
gico con el de población y, a partir de ahí, calcular las medias ponderadas de temperatura e
insolación a nivel nacional.

3. Web-scraping de festivos Utilizando la librería BeautifulSoup de Python, se recorrie-
ron las páginas de calendarios laborales provinciales. Se identificaron las fechas festivas y se
generó un indicador numérico:

festivoprovincia(t) =


1, si es festivo nacional o domingo,

0,5, si es sábado y no es festivo nacional,

Pprov

Ptotal
, si es festivo regional.

Es importante resaltar que, una vez descargados los datos y unificados en un solo datafra-
me, se estandarizó la columna "provincia"para así poder crear la columna entre el año y la
provincia.

4. Descarga de población (INE) Se descargó un fichero CSV con la población de cada
provincia para el intervalo de tiempo de 2015–2024. Estos valores permitieron calcular los
pesos demográficos Pprov

Ptotal
utilizados en la agregación de variables climáticas y días festivos,

como se explicó en los apartados anteriores.

Con estas cuatro fuentes se dispuso de un dataset unificado, alineado en frecuencia horaria
y geográfica, listo para su limpieza y posterior análisis.

4.2.2. Análisis exploratorio de datos

Análisis univariante temporal y estacional Para comprender el comportamiento de la se-
rie de volumen neto de desvíos, en primer lugar se generó un conjunto de variables exógenas
a partir de la marca temporal. De la columna de fecha y hora se obtuvieron las variables: hora,
día del mes, semana del año, día de la semana, mes, trimestre y semestre. Estas caracterís-
ticas permitieron investigar posibles patrones y estacionalidades en la serie principal.

Acto seguido, se trazó gráficamente la variable objetivo utilizando matplotlib y seaborn. La
serie temporal se representó con un gráfico de líneas, su distribución se examinó mediante
un histograma y se evaluó el ajuste a la normalidad con un QQ-plot. Esta exploración inicial
ofreció una visión clara de tendencias, picos y colas de la distribución.
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Para determinar la estacionariedad, se aplicó el test de Dickey–Fuller aumentado usando el
modulo de Python "statsmodels". El estadístico resultante y su p-valor permitieron evaluar si
la media y la varianza se mantenían constantes a lo largo del tiempo. A continuación, se em-
pleó la prueba de Ljung–Box para verificar la autocorrelación serial y detectar dependencias
significativas entre valores separados por distintos lags.

Asimismo, la normalidad de la serie de desvíos se contrastó mediante las pruebas de Shapi-
ro–Wilk y Kolmogórov–Smirnov, utilizando el módulo de Python scipy. Estas pruebas permi-
tieron evaluar si la suposición de normalidad era razonable o si resultaba necesario aplicar
transformaciones a los datos. Cabe destacar que, si bien los modelos empleados en esta
investigación no requieren estrictamente que se cumpla el supuesto de normalidad, cono-
cer si la distribución empírica se aproxima a una normal resulta igualmente importante, dado
que esta información puede ser crucial para la interpretación de resultados y la aplicación de
técnicas estadísticas complementarias.

Para profundizar en las correlaciones temporales, se generaron los correlogramas (ACF y
PACF). Mediante ellos se identificaron los retardos (lags) en los que los valores pasados
de la serie o sus errores explicaban parte de la varianza futura, lo cual sirve de guía para
la selección de órdenes en modelos ARIMA o para el diseño de ventanas de retardos en
algoritmos de machine learning.

Posteriormente, se calcularon estadísticas descriptivas básicas y avanzadas: media, media-
na, percentiles 25 y 75, mínimo, máximo, desviación típica, coeficiente de asimetría y curtosis.
Este resumen cuantitativo complementó la inspección gráfica y los contrastes de hipótesis,
revelando posibles sesgos, dispersión y colas en la distribución de los desvíos, y orientó la
elección de las familias de modelos predictivos más adecuadas.

A fin de suavizar las fluctuaciones diarias y poner de relieve patrones de mayor escala, la
serie de volumen neto de desvíos se re-muestreó con frecuencia semanal y se representó
año por año. Este procedimiento permitió atenuar la variabilidad a corto plazo y, al compa-
rar cada temporada anual por separado, identificar posibles comportamientos recurrentes en
determinados meses.

Seguidamente, se generaron mapas de calor (heatmaps) del volumen neto de desvíos usan-
do como ejes el día de la semana y la hora del día. De este modo se visualizaron con claridad
las franjas horarias y jornadas en que los desequilibrios tienden a concentrarse. Para profun-
dizar en la estacionalidad semanal y mensual, se elaboró un heatmap global —abarcar todo
el intervalo 2015–2024— y, además, un heatmap individual para cada mes del año. Cabe des-
tacar, que estas representaciones gráficas se analizarán en la sección de resultados, donde
se destacarán los picos de desvío asociados a horas punta y a eventos estacionales.

Análisis multivariante temporal y estacional Con el fin de evaluar las relaciones entre la
variable objetivo (volumen neto de desvíos) y el conjunto de variables exógenas, así como de
identificar posibles problemas de multicolinealidad, se siguió el siguiente protocolo metodoló-
gico:

Se construyó una matriz de correlación de Pearson que incluyó todas las variables numéri-
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cas (regresores temporales, climáticos y de mercado). En los casos de alta correlación entre
regresores, se seleccionó el predictor con mayor correlación con la serie de desvíos, garan-
tizando así un conjunto de variables explicativas parsimonioso. Sin embargo, no se asegura
que el conjunto de datos esté libre de multicolinealidad, pero sí se reduce considerablemente
el riesgo de que esta se presente.

Por otra parte, a partir de las variables exógenas originales, se crearon un conjunto de nuevos
atributos con el fin de facilitar la captura de patrones no lineales y profundizar los análisis
exploratorios:

• Tipo de clima: basado en la distribución de la temperatura media. Se calcularon los
percentiles 25, 50 y 75 de la serie; los valores por debajo del p25 se etiquetaron como
“frío”, los entre p25 y p50 como “templado”, los entre p50 y p75 como “cálido” y los
superiores a p75 como “muy cálido”.

• Grupo_hora: resultado del análisis de los mapas de calor. Las horas entre las 07:00 y
las 20:00 se agruparon bajo la etiqueta “día” y el resto como “noche”, para diferenciar
patrones de comportamiento diurno y nocturno.

• Estación del año: categorización de los meses en las cuatro estaciones: primave-
ra (marzo–mayo), verano (junio–agosto), otoño (septiembre–noviembre) e invierno (di-
ciembre–febrero).

• Festivo (agrupado): versión no ponderada de la variable festivo, donde sábados y
festivos reginales se consideran un único grupo “medio festivo” y los festivos nacionales
otro grupo “festivo”.

• Rezago 1h del volumen de desvíos: variable de retraso de una hora de la serie obje-
tivo, incorporada tras observar en los correlogramas que el lag 1 aportaba información
significativa para la predicción.

Con estas transformaciones se amplió el espacio de características, facilitando a los modelos
la detección de efectos estacionales, horarios y de temperatura sobre el volumen neto de
desvíos.

Sin embargo, una inspeccion visual resultaba pertinente para analizar cómo las nuevas ca-
racterísticas capturaban la variabilidad del volumen neto de desvíos y las relaciones con las
exógenas. Para ello, se siguió este procedimiento:

• Diagramas de caja (boxplots) del volumen neto de desvíos agrupado por tipo de cli-
ma, estación del año y grupo_hora. Estos gráficos permiten apreciar de un vistazo la
dispersión, los cuartiles y la existencia de valores atípicos en cada categoría.

• Gráficas de líneas comparativas entre el volumen neto de desvíos y variables exóge-
nas clave (previsión eólica y precio del mercado diario). Cada par de series se re-
presentó con distintas agregaciones temporales: diaria, semanal, mensual, trimestral,
semestral y anual, con el fin de revelar tendencias y sincronías a diferentes escalas.

• Escalado de variables: antes de trazar las series, todas las variables numéricas (vo-
lúmenes, precios, temperatura, viento, horas de insolación) se normalizaron para com-
partir rango y unidad estadística. De este modo, las gráficas de líneas comparativas
resultaron más informativas y facilitaron la detección de correlaciones.

• El mismo proceso de escalado y visualización se aplicó a pares de variables explica-
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tivas (temperatura vs. velocidad del viento, temperatura vs. insolación), con objeto de
identificar co-movimientos y posibles redundancias.

Estas representaciones gráficas, junto con el escalado previo, proporcionan una visión clara
de los patrones conjuntos y sirven de guía para la selección y parametrización de los modelos
predictivos.

Para concluir con los análisis exploratorios se considero cuantificar la dependencia temporal
entre el volumen neto de desvíos y la temperatura media. Para ello, se empleó un análisis de
correlación cruzada (cross-correlation). Mediante una función implementada en Python, se
generó un vector de retardos ℓ ∈ [−24, 24] y, para cada ℓ, se calculó el coeficiente de correla-
ción de Pearson entre la serie de desvíos y la serie de temperatura desplazada ℓ horas. Este
enfoque permite determinar qué valores pasados de la temperatura (lags positivos) guardan
mayor asociación con el valor actual de los desvíos, y viceversa (lags negativos).

Cabe destacar, que el mismo protocolo metodológico se replicó para otras variables exógenas
relevantes: previsión eólica, precio del mercado diario e insolación horas. Para cada una, se
construyó la curva de correlación cruzada en el rango de −24 a +24 horas, de modo que los
picos en lags positivos indiquen los desfases temporales más informativos para la predicción
del volumen neto de desvíos y sirvan de guía para la selección de rezagos en los modelos
predictivos.

Modelado con CatBoost y análisis de importancia de variables Para cuantificar la con-
tribución de cada variable explicativa a la predicción del volumen neto de desvíos, se entrenó
un modelo de CatBoost Regressor siguiendo este procedimiento:

1. Partición temporal de los datos: el conjunto completo se dividió en dos subconjuntos
entrenamiento (90 %) y prueba (10 %)—respetando el orden cronológico para evitar
filtrado de información futura.

2. Selección de características: las variables predictoras se agruparon en dos listas:

• Numéricas: temperatura, insolación, velocidad del viento, precio de mercado, pre-
visión eólica, y variables temporales (hora, día, mes, semana, trimestre, semestre,
año) junto al rezago de desvíos a una hora.

• Categóricas: tipo de clima, grupo_hora, estación y festivo.

3. Configuración del modelo:

• Iteraciones: 500
• Tasa de aprendizaje (learning rate): 0.05
• Profundidad máxima de árboles: 6
• Función de pérdida y métrica de evaluación: RMSE
• Early stopping con 50 rondas de paciencia, usando el conjunto de validación

Estos valores se eligieron para garantizar que el modelo entrenara lo suficiente como
para estabilizar las importancias sin entrar en una búsqueda exhaustiva de hiperpará-
metros. Un número alto de iteraciones (500) asegura que cada variable tenga oportuni-
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dad de aportar a la reducción del error, mientras que una tasa de aprendizaje moderada
(0.05) y una profundidad limitada (6) evitan un sobreajuste excesivo. El uso de RMSE
como función de pérdida y métrica de evaluación permite cuantificar directamente la
desviación media en las mismas unidades de la serie, y el early stopping con paciencia
de 50 rondas previene el entrenamiento innecesario una vez que el RMSE en validación
deja de mejorar.

4. Entrenamiento: se construyó un Pool de CatBoost para entrenamiento y validación,
indicando explícitamente cuáles variables eran categóricas, y se ajustó el modelo opti-
mizando el RMSE sobre el conjunto de validación.

CatBoost maneja internamente las variables categóricas mediante codificaciones ba-
sadas en estadísticas de la propia variable objetivo, por lo que pasar un Pool con esa
información permite explotar esa característica sin convertir manualmente cada cate-
goría en dummies (Prokhorenkova et al., 2018). Optimizar sobre el RMSE en validación
asegura que las predicciones futuras conserven la capacidad de capturar la tendencia
y los patrones generales de la serie, ya que la evaluación se realiza con datos que no
se usaron directamente para ajustar los pesos del modelo (Prokhorenkova et al., 2018).

5. Extracción de importancia: una vez finalizado el fit, se obtuvo el feature importance de
CatBoost y se representó gráficamente mediante un diagrama de barras horizontales
para visualizar qué variables aportan con mayor peso al poder predictivo.

Este enfoque permitió identificar de forma robusta las características más relevantes —tanto
numéricas como categóricas— y sirvió de base para depurar el conjunto de regresores antes
de la fase final de evaluación.

Es importante señalar que este procedimiento fue llevado a cabo con el lenguaje de progra-
mación Python, específicamente con los módulos sklearn y catboost.

Una vez realizado el análisis de importancia de variables, se procedió con la configuración
del modelo CatBoost.

Entrenamiento y ajuste de hiperparámetros con CatBoost Para optimizar la capacidad
predictiva de CatBoost sobre el volumen neto de desvíos, se aplicó el siguiente protocolo:

1. Definición de variables. Se estableció como variable objetivo volumen_neto_desvios

y como predictores un conjunto mixto de características numéricas y categóricas:

• Numéricas: volumen neto desvios lag1, hora, año, temperatura en celsius, insola-
ción horas, semana, precio mercado, mes, prevision eólica mw.

• Categóricas: grupo hora.

2. Partición temporal. El DataFrame completo se dividió en dos subconjuntos cronológi-
cos:

• Entrenamiento y Validación (90 % de las observaciones).
• Prueba (10 %).
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Esta división asegura que no haya filtrado de información futura durante el ajuste de
hiperparámetros.

3. Validación cruzada para series temporales. Se empleó TimeSeriesSplit con 5 par-
ticiones para respetar la dependencia temporal durante la búsqueda de parámetros.

4. Grid search de hiperparámetros. Se configuró un espacio de búsqueda que incluía:

• iterations: [300, 500]
• learning_rate: [0.05, 0.1]
• depth: [4, 6, 8]
• l2_leaf_reg: [1, 3, 5]
• bagging_temperature: [0, 1, 3]

Usando GridSearchCV con scoring de RMSE (negativo para maximizar) y procesa-
miento en paralelo, se identificaron los valores de hiperparámetros que minimizan el
error de validación.

Con el objetivo de poder comparar estos resultados con las diferentes metodologías, se
extrajo el RMSE positivo y, además, se calculó el SMAPE, para de esa forma obtener
el error porcentual.

5. Entrenamiento del modelo final. Con los mejores parámetros hallados, se reentrenó
CatBoost sobre el conjunto completo de entrenamiento (90 % de los datos) y se calculó
la precisión del modelo para capturar los signos de los desvíos, ya sean positivos o
negativos. Posteriormente, se obtuvo la precisión del modelo (accuracy).

Modelado con Prophet El protocolo aplicado al modelo Prophet resultó muy similar al del
modelo CatBoost, en cuanto a la definición de variables, la partición temporal y la validación
cruzada para series temporales. Esto se debió a que se buscó una metodología similar con el
propósito de comparar la efectividad de ambos modelos; por lo tanto, dichos procedimientos
se llevaron a cabo de forma similar.

No obstante, los parámetros e hiperparámetros del modelo Prophet son distintos y, por lo
tanto, requieren un proceso diferente.

Para afinar los hiperparametros del modelo se utilizo un grid con tres valores para la flexibili-
dad de la tendencia y tres para la fuerza de la estacionalidad.

• changepoint_prior_scale: [0.01, 0.05, 0.1]
• seasonality_prior_scale: [1.0, 10.0, 20.0]

Posteriormente, se emplearon cinco particiones temporales sucesivas para aplicar validación
cruzada, en las que cada partición entrenaba al modelo con los datos más antiguos y se vali-
daba con el conjunto de datos inmediatamente posterior. Después de recorrer las particiones,
se calculaban el RMSE y el SMAPE promedio provenientes de cada conjunto de evaluación;
de esa forma, se obtenía una métrica robusta, capaz de prevenir el sobreajuste.

Además, luego de haberse ejecutado cada una de las posibles combinaciones de hiperpará-
metros y de haberse obtenido, para cada combinación, sus respectivas métricas de bondad
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de ajuste, se escogió el RMSE más bajo y sus respectivos hiperparámetros.

Para evaluar qué tan bien el modelo Prophet, ya calibrado con los mejores parámetros, cap-
tura la dirección de los desvíos, se reentrenó con el conjunto de datos de entrenamiento. Una
vez ajustado el modelo final, se generaron predicciones sobre el mismo conjunto de datos
para obtener la precisión del pronóstico de la tendencia de la serie; es decir, identificar si el
volumen neto de los desvíos es negativo o positivo y compararlo con modelos previamente
configurados (como el modelo CatBoost).

Modelo hibrido Catboost-Prophet Con el objetivo de mejorar la precisión de los pronósti-
cos, se combinaron las predicciones de CatBoost y Prophet mediante un ensamblado ponde-
rado, de forma tal que el modelo más preciso recibiera mayor peso. Primero, se calculó para
cada modelo un peso proporcional a la inversa de su RMSE obtenido mediante validación
cruzada, es decir:

wi =
1

RMSEi
, w

(n)
i =

wi∑
j wj

,

Posteriormente, se normalizaron los pesos para que sumaran 1. Con los pesos normalizados,
se generó la predicción híbrida en cada instante mediante la siguiente fórmula:

ŷhibrido = w
(n)
Cat ŷCatBoost + w

(n)
Prop ŷProphet.

Después, se calculó el RMSE de esta nueva serie y la precisión que tuvo el modelo para
capturar las tendencias, con el propósito de corroborar si la unión de ambos modelos derivaba
en un modelo más robusto y eficiente.

Modelo Catboost Multi-salida Con el propósito de implementar el enfoque multi-salida con
CatBoost y poder pronosticar las próximas 24 horas del volumen neto de desvíos, se llevó
a cabo una transformación de datos en la que cada fila corresponde a la referencia de las
00:00 de un día. Por otra parte, se tomaron los valores rezagados de la variable objetivo
como variables explicativas—en este caso, las últimas 48 horas. En paralelo, se incluyeron
las variables exógenas utilizadas en los modelos anteriores, con la excepción del rezago de
una hora. Como variable objetivo, se tienen los valores reales de los desvíos desde las 00:00
hasta las 23:00 horas. Cabe destacar que cada hora corresponde a una columna.

Además, se aplicó una transformación one-hot encoding a las variables categóricas y, pos-
teriormente, todas las variables explicativas se transformaron al tipo float. A continuación, se
dividió el conjunto de datos en entrenamiento y prueba con una proporción de 90 % y 10 %,
respectivamente. Después, se separaron las variables explicativas del conjunto de variables
objetivo.

Cabe destacar que el pipeline de preprocesamiento incluyó una estandarización y, dado que
existe una alta dimensionalidad, se agregó un PCA manteniendo el 95 % de la varianza de los
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datos. Además, se realizó una validación cruzada con 3 particiones respetando el orden cro-
nológico. Por último, después de haber seleccionado el mejor conjunto de hiperparámetros,
se entrenó el conjunto de entrenamiento para obtener el modelo final.

Con el modelo final entrenado, se evaluó su precisión con los datos de prueba, obteniendo
las métricas RMSE y SMAPE para cada hora; es decir, se obtuvieron 24 valores por métrica.
Adicionalmente, se evaluó la precisión para estimar si el desvío sería negativo o positivo.

Simulación de penalizaciones y gastos Para poner a prueba el valor de las predicciones
obtenidas por el modelo multi-salida, se realizó una simulación de cómo habría operado una
comercializadora siguiendo la estrategia sugerida por el modelo, comparándola contra una
estrategia de compra con un valor constante.

Para ello, se construyó un conjunto de datos con el precio del mercado, el precio de las
penalizaciones por desvíos al alza y a la baja, las predicciones del volumen neto de los
desvíos y los valores reales, dentro del intervalo de tiempo correspondiente a los datos de
prueba.

Una vez cargados los datos y configurado el conjunto (dataset), se calcularon las penaliza-
ciones de la siguiente manera:

πsubir(t) = pspot(t) − pdesvíos,subir(t), πbajar(t) = pdesvíos,bajar(t) − pspot(t).

C(t) =


∣∣∆v(t)

∣∣ πsubir(t), ∆v(t) ≤ 0,

∆v(t) πbajar(t), ∆v(t) > 0,

Posteriormente, se simuló la compra, en donde se plantearon 2 estrategias. En la primera,
la comercializadora compraría un volumen constante de 100 MW cada hora, sin importar la
volatilidad de los desvíos. Por otra parte, si se consideran los desvíos pronosticados como
parte de la estrategia de compra, la comercializadora comprará 100 MW cada hora más la
centésima parte de la desviación pronosticada. Cabe destacar que se toma la centésima
parte porque los desvíos pronosticados son del sistema eléctrico de España y no de un
agente en específico. Por lo tanto, solo se toma una parte de los mismos.

El cálculo de la compra se expresa de la siguiente forma:

compra_con_estrategia(t) = L+
v̂(t)

100
(4.1)

• L = 100 MW

• v̂(t) = volumen neto de desvíos predicho en la hora t

A continuación, se generó un vector de desviaciones a partir de una distribución normal para
emular variabilidad en el consumo real de la empresa. Los parámetros de la distribución son
ficticios y se seleccionaron con el criterio de que la probabilidad de observar un desvío supe-
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rior a 45 MW sea aproximadamente del 0,3 %. A partir de ese valor, se calculó el consumo
real, el cual es el desvío real simulado más la compra base (100 MW). Teniendo el consumo
real, se determinó el desvío con estrategia; el mismo es la diferencia entre el consumo real
menos la compra con estrategia. Expresado en fórmulas, serían las siguientes:

vreal(t) ∼ N
(
0, 152

)
, (4.2)

creal(t) = vreal(t) + L, (4.3)

∆vcon_estrategia(t) = creal(t)− compra_con_estrategia(t) (4.4)

Por último, a partir del desvío con estrategia, se obtuvo el coste de las operaciones con estra-
tegia y el coste sin estrategia. Dichos cálculos se pueden representar mediante las siguientes
fórmulas:

Coriginal(t) =


∣∣vreal(t)

∣∣ πsubir(t), vreal(t) ≤ 0,

vreal(t) πbajar(t), vreal(t) > 0,
(4.5)

Ccon_estrategia(t) =


∣∣∆vcon_estrategia(t)

∣∣ πsubir(t), ∆vcon_estrategia(t) ≤ 0,

∆vcon_estrategia(t) πbajar(t), ∆vcon_estrategia(t) > 0.
(4.6)

4.3 Recursos requeridos

A continuación se enumeran los recursos utilizados para la ejecución de este proyecto:

• Hardware
• Ordenador personal con procesador Ryzen 5, 8 GB de RAM y almacenamiento

SSD.
• Conexión a Internet para descarga de datos y librerías.

• Software
• Python 3.10.0 y entornos virtuales (venv) para instalación de librerías.
• Librerías de análisis y modelado:

• pandas, NumPy, scikit-learn
• CatBoost, fbprophet
• matplotlib, seaborn

• VS Code como entorno de desarrollo.
• Distribución LATEX (TeX Live / Overleaf) para la redacción del documento.

• Datos
• Series de volumen neto de desvíos y variables exógenas obtenidas de ESIOS,

AEMET y scraping web.
• Precios del mercado spot e intradiario descargados de OMIE y REE.

• Asistencia de expertos
• Tutor académico, con reuniones periódicas para revisión de avances metodológi-
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cos y de redacción.

4.4 Resultados del proyecto

En esta sección se presentan los resultados obtenidos durante la fase de análisis de datos y
modelado. El objetivo es mostrar de forma ordenada y precisa los siguientes apartados:

• Análisis univariante: Se analiza la serie de volumen neto de desvíos, incluyendo prue-
bas estadísticas de hipótesis y visualizaciones a diferentes escalas temporales.

• Análisis multivariante: Se examinan las relaciones entre la variable objetivo y las va-
riables exógenas.

• Evaluación de modelos: Se emplean métricas de precisión y comparativos entre los
modelos Prophet, CatBoost y un modelo híbrido. También se evalúa el modelo CatBoost
con enfoque multi-salida.

• Simulación económica: Se calcula el impacto financiero de aplicar la estrategia de
predicción frente a una política de compra constante.

4.4.1. Análisis univariante

Estadísticas descriptivas

Se presentan los estadísticos descriptivos correspondientes al volumen neto de los desvíos.
Dichos indicadores permiten la comprensión de su distribución, tendencia central, dispersión
y forma de la variable, proporcionando una base para entender su comportamiento y orientar
los análisis posteriores.

Tabla 4.2. Estadísticos descriptivos del volumen neto de desvíos

Estadístico Valor

Mínimo -5315.600
Percentil 25 -374.300
Media 123.338
Mediana 130.900
Percentil 75 627.200
Máximo 5507.100
Asimetría 0.019
Curtosis 1.659
Coeficiente de variación 7.024
Desviación típica 866.366

El volumen neto de los desvíos presenta un amplio rango de valores, con un mínimo de
-5315.60 y un máximo de 5507.10, lo cual indica una alta dispersión y la existencia de des-
viaciones extremas tanto negativas como positivas. La media (123.34) y la mediana (130.90)
están relativamente cercanas, lo cual, junto al valor muy bajo de asimetría (0.019), sugiere
que la distribución es casi simétrica, aunque con una ligera inclinación hacia valores más
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altos. La variabilidad es considerable, como lo reflejan el coeficiente de variación (7.02) y la
desviación típica (866.37). Con respecto a la curtosis, el valor calculado (1.66) corresponde
al exceso de curtosis respecto a una distribución normal, lo que indica una forma leptocúrtica,
con mayor concentración de datos cercanos a la media y colas más pesadas. Finalmente, los
percentiles 25 (-374.30) y 75 (627.20) definen un intervalo central de dispersión moderada,
en el que se concentra el 50 % de los datos.

Análisis gráfico

Se presentan a continuación tres visualizaciones clave que permitirán obtener información
relacionada con la distribución de la variable de estudio, si es estacionaria o no, y si presenta
algún tipo de sesgo. Cabe destacar que los estadísticos descriptivos fueron capaces de pro-
veer cierta información. Por lo tanto, se espera que las visualizaciones complementen dichos
análisis.

Figura 4.1. Serie temporal del volumen neto de desvíos.
Fuente: Cálculos propios.

Figura 4.2. Histograma con densidad del volumen neto de los desvíos.
Fuente: Cálculos propios.
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Figura 4.3. Gráfico Q-Q del volumen neto de los desvíos.
Fuente: Cálculos propios.

Se puede apreciar que la gráfica de serie temporal corrobora visualmente la alta dispersión y
el amplio rango de valores, mostrando fluctuaciones constantes y la presencia de desviacio-
nes extremas a lo largo del tiempo, sin un patrón estacional o tendencia clara aparente. Por
otra parte, el histograma complementa el análisis previo en los estadísticos descriptivos de la
casi simetría de la distribución y evidencia su forma leptocúrtica. Finalmente, el gráfico Q-Q
refuerza esta conclusión al mostrar una clara desviación de los puntos respecto a la línea de
normalidad en los extremos, lo que subraya la naturaleza no normal de la distribución y la
existencia de colas pesadas.

ACF y PACF

La exploración de los correlogramas es esencial para diagnosticar autocorrelación en la serie
de desvíos. La función de autocorrelación (ACF) muestra la correlación entre un valor y sus
rezagos, incluidos los efectos indirectos que pasan por rezagos intermedios, mientras que
la función de autocorrelación parcial (PACF) aísla únicamente la correlación directa de cada
rezago, controlando esas influencias intermedias (Hyndman & Athanasopoulos, 2018).
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Figura 4.4. Función de autocorrelación (ACF).
Fuente: Cálculos propios.

Figura 4.5. Función de autocorrelación parcial (PACF).
Fuente: Cálculos propios.

Se puede apreciar que ambos gráficos revelan indicios de autocorrelación en la serie. En
el correlograma ACF se observa un decaimiento progresivo que se mantiene por encima
de los límites de confianza hasta aproximadamente el rezago seis, lo cual indica memoria
prolongada en la serie (efectos indirectos). En el PACF, únicamente el primer rezago supera
el umbral de significación, mientras que los siguientes caen rápidamente al nivel de ruido. Este
patrón de decaimiento lento en el ACF, junto con un único pico en el PACF, sugiere que un
modelo autorregresivo de orden uno (AR(1)) podría capturar adecuadamente la dependencia
lineal de corto plazo en el volumen neto de los desvíos.

Contraste de hipótesis

Es de vital importancia corroborar de manera rigurosa los análisis y conclusiones obtenidos
anteriormente. Para ello, se llevaron a cabo una serie de pruebas estadísticas que permiten
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determinar, con un nivel de significación adecuado, si los supuestos antes mencionados son
verídicos o no.

A continuación, se presenta la prueba de Dickey–Fuller aumentada, la cual permite determi-
nar si la serie temporal es estacionaria. Posteriormente, se realiza una prueba para evaluar
si la serie presenta dependencia temporal; dicha prueba se denomina Ljung–Box. Por último,
se verifica si la distribución empírica de la serie es similar a una distribución normal. Para ello,
se empleó la prueba de Shapiro–Wilk.

ADF (Dickey–Fuller aumentada)

Hipótesis:

• H0: La serie tiene raíz unitaria (no estacionaria).
• H1: La serie es estacionaria.

Tabla 4.3. Resultados del test ADF (Dickey–Fuller aumentada) para α = 0,05

Contraste Estadístico Región crítica Nivel de significación p-valor

ADF τ = −26,10 τ < −1,95 0,05 p = 0,000

Conclusión: Con un nivel de significación del 5 %, se rechaza H0. Por lo tanto, se puede
concluir que la serie temporal del volumen neto de los desvíos en el intervalo 2015–2024 es
estacionaria.

Test de Ljung–Box

Hipótesis:

• H0: No existe autocorrelación significativa hasta el lag 10.
• H1: Existe autocorrelación significativa en al menos un lag ≤ 10.

Tabla 4.4. Resultados del test de Ljung–Box (lag=10) para α = 0,05

Contraste Estadístico Región crítica Nivel de significación p-valor

Ljung–Box χ2 = 193894,72 χ2 > 18,31 0,05 p = 0,000

Conclusión: Con un nivel de significación del 5 %, se rechaza H0. Por lo tanto, se confirma
que la serie presenta autocorrelación.
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Shapiro–Wilk

Hipótesis:

• H0: La distribución de la variable es normal.
• H1: La distribución no es normal.

Tabla 4.5. Resultados del test de Shapiro–Wilk para α = 0,05

Contraste Estadístico Región crítica Nivel de significación p-valor

Shapiro–Wilk W = 0,89 W < 0,975 0,05 p = 0,001

Conclusión: Con un nivel de significación del 5 %, se rechaza H0. Se observa que la distri-
bución del volumen neto de los desvíos no se ajusta a una normal.

Análisis a diferentes frecuencias temporales

Como complemento al análisis univariante de la serie horaria, se agruparon los datos de vo-
lumen neto de desvíos en frecuencias mayores (diaria, semanal, mensual, trimestral y anual).
Esto permite detectar patrones de variación a distintas escalas temporales, como tendencias
a largo plazo, estacionalidades o ciclos que no siempre resultan evidentes en la serie horaria.

Figura 4.6. Serie diaria del volumen neto de desvíos.
Fuente: Cálculos propios.
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Figura 4.7. Serie semanal del volumen neto de desvíos.
Fuente: Cálculos propios.

Se puede observar que existe una leve tendencia bajista a través del tiempo. Es decir, que
durante los años 2015 hasta 2018 la energía consumida parece ser mayor que la programada
en promedio. Posteriormente, durante los años 2019 hasta 2022, parece que la volatilidad de
la serie disminuye, con valores cercanos a cero y pocos valores atípicos. Finalmente, durante
el periodo de 2022 hasta 2024, hay patrones que indican que la energía consumida es menor
que la programada, debido a la mayor cantidad de picos negativos.

Para las frecuencias mensual, trimestral, semestral y anual vease el Anexo A.

Evolución mensual año a año

Para profundizar en el comportamiento estacional a nivel anual, se generaron gráficos de
la serie mensual del volumen neto de desvíos desglosados por año. Esto permite comparar
patrones de variación intraanuales y detectar posibles cambios en la estacionalidad a lo largo
del periodo de estudio.
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Figura 4.8. Serie mensual del volumen neto de desvíos (2015).
Fuente: Cálculos propios.

Figura 4.9. Serie mensual del volumen neto de desvíos (2016).
Fuente: Cálculos propios.

Se puede observar que, durante los meses de abril a septiembre en los años 2015 y 2016, el
volumen neto de los desvíos presenta valores mensuales promedio superiores al del resto de
los meses. Esto indica que existen indicios de estacionalidad en la serie, por lo que generar
variables como la estación del año o el trimestre podría ayudar a los modelos de aprendizaje
automático a capturar dichos patrones y proporcionar pronósticos más precisos.

Los gráficos correspondientes a los años 2017–2024 se incluyen en el Anexo B.

Patrones intrasemanales mediante mapas de calor

Para visualizar de manera compacta la variación media del volumen neto de desvíos a lo
largo de la semana y el día, se emplean mapas de calor que muestran el promedio histórico
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para cada combinación de hora y día de la semana. Esta representación facilita la detección
de franjas horarias críticas y diferencias entre jornadas laborales y fines de semana.

Figura 4.10. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día.
Fuente: Cálculos propios.

Se puede apreciar que existen patrones en las horas de los días de la semana, ya que el
mapa de calor refleja una tonalidad roja en las horas comprendidas entre las 22:00 y las 4:00,
de lunes a viernes. Por otra parte, durante los fines de semana, este intervalo se prolonga
hasta las 7:00. Sin embargo, en las horas laborales o durante las horas del día, el desvío
tiende a ser muy próximo a cero, en comparación con los intervalos antes mencionados,
con la excepción del intervalo de 17:00 a 20:00, donde parece que, en promedio, la energía
consumida fue menor que la programada.

Por lo tanto, se puede considerar la captura de estos patrones como variables para futuros
modelos predictivos.

Los mapas de calor desglosados mes a mes se presentan en el Anexo C, proporcionando
una visión más detallada de cómo estos patrones intrasemanales pueden variar a lo largo del
año.

4.4.2. Análisis Multivariante

Relaciones entre variables mediante matriz de correlación

Para explorar la intensidad y dirección de la asociación lineal entre el volumen neto de des-
víos y las variables exógenas (precio spot, previsión eólica, temperatura, etc.), se construyó
una matriz de correlación. Este mapa de calor facilita la identificación de factores con mayor
influencia y posibles multicolinealidades que deban considerarse en el modelado.
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Figura 4.11. Matriz de correlación entre el volumen neto de desvíos y variables exógenas.
Fuente: Cálculos propios.

Se puede observar que existe una alta correlación entre las variables explicativas: precio del
mercado, precio de pago y precio de cobro. Esto es esperable, dado que representan dife-
rentes conceptos dentro del mismo mercado. Se evalúa eliminar el precio de cobro y pago
en los futuros modelos, ya que el precio de mercado podría explicar suficientemente el com-
portamiento del conjunto. Además, el precio de cobro y pago se determina posteriormente
al desvío; por lo tanto, en un modelo predictivo no sería posible emplearlo como variable
explicativa, ya que se requieren variables que aporten información previa al suceso.

Por otra parte, existen otras correlaciones evidentes, como la de insolación horaria con la
temperatura en grados Celsius, y la de previsión eólica con la velocidad media del viento. No
obstante, dichas variables serán puestas a prueba en un modelo predictivo de aprendizaje
automático, con el fin de evaluar cuáles resultan más significativas para el rendimiento del
modelo.

Finalmente, se observa que el volumen neto de los desvíos no presenta una fuerte correlación
con ninguna de las variables explicativas del proyecto. Sin embargo, las variables precio de
cobro, insolación horaria y previsión eólica parecen ser las más importantes. No obstante,
es necesario realizar más pruebas y evaluar su nivel de significación mediante técnicas más
robustas.

45



Predicción del volumen neto de los desvíos

Edgar Romero Depablos

Importancia de características con CatBoost

Con el objetivo de entender qué factores explicativos contribuyen en mayor medida a la pre-
dicción del volumen neto de desvíos, se entrenó un modelo CatBoostRegressor con los
principales hiperparámetros optimizados y posteriormente se calculó la importancia de cada
variable. Este análisis permite identificar qué rezagos, variables meteorológicas o de calen-
dario resultan más determinantes y guiar refinamientos futuros en la selección de features.

Tabla 4.6. Hiperparámetros del modelo CatBoost

Parámetro Valor

iterations 500
learning_rate 0.05
depth 6
loss_function RMSE
eval_metric RMSE
random_seed 42

Tabla 4.7. Importancia de características obtenida de CatBoost ( %)

Feature Importancia

volumen_neto_desvios_lag1 76.41
hora 9.32
anio 3.49
insolacion_horas 1.89
temperatura_cels 1.81
grupo_hora 1.45
precio_mercado 1.24
semana 1.12
prevision_eolica_mw 0.74
mes 0.71
velmedia_ms 0.39
dia_semana 0.29
tipo_clima 0.25
estacion 0.22
trimestre 0.22
festivo 0.18
dia 0.15
semestre 0.11

Análisis de resultados: La importancia de características revela que el rezago de un periodo
horario (volumen_neto_desvios_lag1) domina con un 76 %, lo cual confirma que la depen-
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dencia inmediata es la principal fuente de información para el modelo. A continuación, la hora

y el anio aportan casi un 13 % en conjunto, indicando patrones intradía y de largo plazo. Va-
riables climáticas como insolacion_horas y temperatura_cels tienen un peso moderado
(alrededor de 1.8–1.9 %), mientras que los indicadores de calendario (grupo_hora, festivo,
trimestre, semestre) suman menos del 3 %, lo que sugiere que las variaciones estacio-
nales y festivas tienen un efecto residual. Con base en estos resultados, podría valorarse
descartar o agrupar variables de baja importancia en modelos posteriores.

Resultados del modelo CatBoost

Tabla 4.8. Mejores hiperparámetros encontrados por GridSearchCV

Parámetro Valor

bagging_temperature 0
depth 4
iterations 300
l2_leaf_reg 3
learning_rate 0.05

Tabla 4.9. Desempeño en validación cruzada (5 folds)

Métrica Valor

RMSECV 398.53 MWh

Tabla 4.10. Accuracy de signo en entrenamiento+validación

Métrica Valor

Accuracy de signo 0.844

Análisis de resultados:
El procedimiento de validación cruzada (5 folds) arrojó un RMSE medio de 398.53 MWh
con la configuración óptima de hiperparámetros. Además, el modelo acertó la dirección del
desvío (positivo o negativo) en un 84.4 % de los casos sobre el conjunto de entrenamiento y
validación. Estos resultados justifican el uso de los parámetros seleccionados y muestran un
buen equilibrio entre error absoluto y habilidad para predecir la dirección del desequilibrio.
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Resultados del modelo Prophet

Tabla 4.11. Mejores hiperparámetros de Prophet según RMSECV

Parámetro Valor

changepoint_prior_scale 0.01
seasonality_prior_scale 10.0

Tabla 4.12. Desempeño de Prophet en validación cruzada (5 folds)

Métrica Valor

RMSECV 408.66 MWh

Tabla 4.13. Accuracy de signo de Prophet en entrenamiento+validación

Métrica Valor

Accuracy de signo 0.842

Análisis de resultados:
Con los parámetros óptimos, Prophet alcanzó un RMSE medio de 408.66 MWh en la vali-
dación cruzada, mostrando un desempeño ligeramente inferior al de CatBoost. La accuracy
de signo del 84.2 % indica que Prophet también captura de forma razonable la dirección del
desvío, aunque con mayor error en magnitud. Estos resultados refuerzan la necesidad de
combinar ambos modelos en un enfoque híbrido para mejorar la precisión global.

Resultados del modelo híbrido

Tabla 4.14. Desempeño del modelo híbrido

Métrica Valor

RMSE 402.24 MWh
Accuracy de signo 0.8437

Comparativo de modelos

48



Predicción del volumen neto de los desvíos

Edgar Romero Depablos

Tabla 4.15. Comparación de RMSE y accuracy entre modelos

Modelo RMSE (MWh) Accuracy de signo

Dummy (lag 1h) 424.26 0.8410
Prophet 408.66 0.8420
CatBoost 398.53 0.8440
Híbrido 402.24 0.8437

Análisis comparativo:
El modelo Dummy basado en el valor de la hora anterior sirve como referencia mínima.
Prophet reduce ligeramente el error frente a ese baseline, pero CatBoost ofrece la mayor
reducción de RMSE (398.5 MWh) y la mejor precisión de signo. El modelo híbrido combina
ambos enfoques: consigue un RMSE intermedio (402.2 MWh) y mantiene una accuracy de
tendencia cercana a la de CatBoost (84.37 %), demostrando que la combinación pondera-
da aporta estabilidad en la predicción de dirección sin sacrificar demasiado la precisión en
magnitud.

Resultados del modelo CatBoost multi-salida

Tabla 4.16. Hiperparámetros finales del modelo multi-salida

Parámetro Valor

Profundidad (model__estimator__depth) 6
Iteraciones (model__estimator__iterations) 200
Regularización L2 (model__estimator__l2_leaf_reg) 3

Tabla 4.17. Desempeño continuo por horizonte (RMSE)

Horizonte RMSE (MWh)

+1 hora 438.61
+2 horas 489.38
+3 horas 517.49
+4 horas 541.13
+5 horas 641.82
+6–+12 h 845.10–1183.08
+13–+24 h 771.27–1264.38

Promedio 952.04
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Tabla 4.18. Precisión de signo por horizonte

Horizonte Accuracy

+1 hora 0.78
+2 horas 0.73
+3–+5 h 0.77–0.64
+6–+12 h 0.62–0.64
+13–+24 h 0.58–0.69

Promedio 0.66

Tabla 4.19. Comparativo RMSE y accuracy de signo: multi-salida vs. modelos dummy

Modelo RMSE (MWh) Accuracy de signo

Dummy (24h lag) 917.77 0.628
Dummy (168h lag) 1086.20 0.556
CatBoost multi-salida (prom.) 952.04 0.660

Análisis de resultados:
El modelo multi-salida muestra un error creciente con el horizonte de pronóstico, partiendo
de un RMSE de 438.6 MWh en la hora +1 hasta valores superiores a 1 200 MWh a partir de
la hora +11, con un RMSE promedio de 952.0 MWh. La precisión de signo también decae
levemente con el tiempo, situándose en un 78 % al primer horizonte y un 66 % global. Frente a
los modelos dummy, el multi-salida ofrece un balance intermedio: mejora considerablemente
al dummy semanal y mejora ligeramente al dummy diario en RMSE, mientras mantiene una
precisión de dirección superior. Esto confirma que incorporar múltiples horizontes en una
única regresión aporta beneficios frente a estrategias ingenuas de lag.

Simulación económica: impacto de la estrategia predictiva

Tabla 4.20. Costes de penalización de la comercializadora

Escenario Coste total (EUR)

Sin estrategia (compra fija) 2 157 079.32
Con estrategia predictiva 2 052 189.84

Ahorro absoluto 104 889.48
Ahorro porcentual 4.86 %

Análisis de resultados:
La simulación muestra que, empleando la estrategia basada en las predicciones de volumen
neto de desvíos, la comercializadora habría reducido sus costes de penalización de 2 157

50



Predicción del volumen neto de los desvíos

Edgar Romero Depablos

079,32 EUR a 2 052 189,84 EUR. Esto equivale a un ahorro absoluto de 104 889,48 EUR
y a una reducción del 4,86 % en el total de penalizaciones. Estos resultados ilustran el valor
práctico de incorporar el modelo en la operativa diaria, contribuyendo a optimizar la posición
de compra y a disminuir significativamente los gastos asociados al desequilibrio del sistema
eléctrico.
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Capítulo 5. Discusión
En esta sección reflexionamos de forma crítica sobre los principales resultados, las decisiones
metodológicas más relevantes, las limitaciones encontradas y el impacto potencial de este
trabajo.

5.1 Interpretación de los hallazgos

El modelo CatBoost simple obtuvo el mejor ajuste cuantitativo (RMSE ≈ 398 MWh, accu-
racy de signo 84,4 %), mientras que Prophet ofreció un desempeño algo inferior (RMSE ≈
409 MWh, accuracy 84,2 %). El enfoque híbrido equilibró ambas metodologías, manteniendo
una accuracy comparable (84,4 %) y un RMSE intermedio (402 MWh). El modelo multisalida,
si bien permite pronosticar 24 horas de forma directa, muestra un aumento de error al crecer
el horizonte (RMSE promedio ≈ 952 MWh, accuracy global 66 %). La simulación económica
ejemplifica el valor práctico: una reducción del 4,86 % en costes de penalización, equivalente
a más de 100 000 EUR.

5.2 Decisiones metodológicas y adaptaciones

Durante el desarrollo se realizaron varias adaptaciones para garantizar robustez y eficiencia:

• Validación cruzada temporal estratificada para evitar filtrado de información futura.
• Ajuste manual de hiperparámetros en Prophet para controlar la flexibilidad de tendencia

y estacionalidad.
• Reducción de dimensionalidad con PCA antes de CatBoost multisalida, para contener

tiempos de entrenamiento.
• Normalización del ajuste en la simulación (división del desvío por 100) para cambios de

compra coherentes.

5.3 Limitaciones

A pesar del éxito de los modelos, el estudio presenta limitaciones:

• Calidad y latencia de datos públicos (ESIOS, AEMET), con posibles sesgos o huecos.
• Pérdida de precisión en horizontes largos (h > 6h) en el modelo multisalida.
• Simplificaciones en la simulación económica (distribución normal de desvíos reales).
• Carga computacional elevada en grid searches y modelos multisalida.

5.4 Impacto práctico

Los resultados demuestran que incorporar predicciones de desvíos en la estrategia de com-
pra ofrece un ahorro económico tangible y mejora la estabilidad operativa. La metodología es
escalable e integrable en herramientas de decisión en tiempo real, beneficiando a las comer-
cializadoras y al sistema eléctrico.
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Capítulo 6. Conclusiones
6.1 Conclusiones del trabajo

En este proyecto se ha desarrollado y comparado un conjunto de modelos de predicción del
volumen neto de desvíos en el sistema eléctrico español, incluyendo Prophet, CatBoost y un
enfoque híbrido, así como un modelo multisalida y dos estrategias dummy de referencia. Los
resultados muestran que:

• CatBoost alcanza el RMSE más bajo (≈ 398 MWh) y una accuracy de signo del 84,4 %,
superando a Prophet (RMSE ≈ 409 MWh, 84,2 %) y a las estrategias dummy.

• El modelo híbrido combina ambos enfoques, manteniendo una accuracy similar con un
RMSE intermedio (≈ 402 MWh).

• El modelo multisalida permite pronosticar 24 horas de forma directa, aunque con un
incremento de error en horizontes largos (RMSE promedio ≈ 952 MWh, accuracy global
66 %).

• La simulación económica evidencia un ahorro del 4,86 % en costes de penalización
(más de 100 000 EUR) al aplicar la estrategia predictiva frente a una compra fija.

Estos hallazgos confirman que incorporar predicciones de desvíos en la planificación de com-
pras contribuye a reducir significativamente los costes operativos y a mejorar la estabilidad
del sistema eléctrico.

6.2 Conclusiones personales

Durante el desarrollo de este trabajo he profundizado en técnicas de series temporales, vali-
dación cruzada temporal y modelos de aprendizaje automático, lo que me ha permitido me-
jorar mi habilidad para manejar grandes volúmenes de datos y ajustar modelos complejos.
Aprendí la importancia de validar cuidadosamente los supuestos estadísticos (estacionarie-
dad, autocorrelación, normalidad) antes de modelar y de combinar enfoques para aprovechar
las fortalezas de cada uno.

Este proyecto me ha enseñado a iterar sobre la metodología, adaptándola según los resulta-
dos intermedios y las limitaciones de los datos. Además, me ha dado una visión práctica de
cómo la ciencia de datos puede generar ahorros reales y aportar valor en el sector energéti-
co. En el futuro, me gustaría explorar arquitecturas avanzadas (por ejemplo, redes neuronales
para multisalida) y desarrollar herramientas en tiempo real para facilitar la adopción de estas
estrategias por parte de las empresas.
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Capítulo 7. Futuras líneas de trabajo
A partir de los resultados obtenidos y de las experiencias durante el desarrollo, se identifican
las siguientes oportunidades para enriquecer y ampliar este proyecto:

• Arquitectura de datos y despliegue automatizado: Diseñar un flujo de ingesta con-
tinua que, mediante APIs y técnicas de web scraping, extraiga automáticamente los
datos de ESIOS, AEMET y demás fuentes. Estos datos se almacenarían en una ba-
se de datos relacional o de series temporales, y un proceso programado (por ejemplo,
con cron o Airflow) los transformaría y volcaría al modelo. De esta forma, el sistema
generaría predicciones periódicas sin intervención manual, simulando un entorno de
producción real en una compañía de energía.

• Comparativa con modelos de deep learning: Con recursos de cómputo más poten-
tes (GPU), entrenar y evaluar arquitecturas basadas en redes neuronales recurrentes
(LSTM, GRU) o modelos híbridos (por ejemplo, Transformer) para forecasting multisali-
da. Estos experimentos permitirían comparar su precisión y eficiencia frente a Prophet
y CatBoost, especialmente en horizontes largos.

• Evaluación de modelos en tiempo real: Integrar un servicio web (REST API) que, a
partir de consultas en tiempo real, devuelva las predicciones de desvíos y estimaciones
de costes, facilitando su adopción por parte de las comercializadoras. Esto incluiría
un panel de control con visualizaciones dinámicas y alertas automáticas ante posibles
desequilibrios críticos.

• Ampliación de variables exógenas: Incorporar datos adicionales (por ejemplo, pre-
cios de mercados internacionales, generación distribuida, indicadores económicos o
demanda sectorial) para explorar su impacto en la precisión del modelo y enriquecer el
análisis de correlaciones.
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Capítulo 8. ANEXOS
Anexo A

Figura 8.1. Serie mensual del volumen neto de desvíos.
Fuente: Cálculos propios.

Figura 8.2. Serie trimestral del volumen neto de desvíos.
Fuente: Cálculos propios.
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Figura 8.3. Serie semestral del volumen neto de desvíos.
Fuente: Cálculos propios.

Figura 8.4. Serie anual del volumen neto de desvíos.
Fuente: Cálculos propios.
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Anexo B

Figura 8.5. Serie mensual del volumen neto de desvíos (2017).
Fuente: Cálculos propios.

Figura 8.6. Serie mensual del volumen neto de desvíos (2018).
Fuente: Cálculos propios.
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Figura 8.7. Serie mensual del volumen neto de desvíos (2019).
Fuente: Cálculos propios.

Figura 8.8. Serie mensual del volumen neto de desvíos (2020).
Fuente: Cálculos propios.
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Figura 8.9. Serie mensual del volumen neto de desvíos (2021).
Fuente: Cálculos propios.

Figura 8.10. Serie mensual del volumen neto de desvíos (2022).
Fuente: Cálculos propios.
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Figura 8.11. Serie mensual del volumen neto de desvíos (2023).
Fuente: Cálculos propios.

Figura 8.12. Serie mensual del volumen neto de desvíos (2024).
Fuente: Cálculos propios.
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Anexo C

Figura 8.13. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Enero).
Fuente: Cálculos propios.

Figura 8.14. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Febrero).
Fuente: Cálculos propios.
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Figura 8.15. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Marzo).
Fuente: Cálculos propios.

Figura 8.16. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Abril).
Fuente: Cálculos propios.
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Figura 8.17. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Mayo).
Fuente: Cálculos propios.

Figura 8.18. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Junio).
Fuente: Cálculos propios.
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Figura 8.19. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Julio).
Fuente: Cálculos propios.

Figura 8.20. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Agosto).
Fuente: Cálculos propios.
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Figura 8.21. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día
(Septiembre).

Fuente: Cálculos propios.

Figura 8.22. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día (Octubre).
Fuente: Cálculos propios.
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Figura 8.23. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día
(Noviembre).

Fuente: Cálculos propios.

Figura 8.24. Mapa de calor del volumen neto de desvíos promedio por día de la semana y hora del día
(Diciembre).

Fuente: Cálculos propios.
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