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RESUMEN
Este trabajo presenta el desarrollo de modelos de aprendizaje automático para complementar
análisis mediante elementos finitos (MEF). Se generan datos sintéticos a partir de modelos de
vigas 1D en HyperMesh, obteniendo como resultados el desplazamiento máximo y la tensión
máxima de Von Mises. Estos resultados se utilizan para entrenar modelos de aprendizaje
automático capaces de realizar predicciones sin necesidad de recurrir al MEF.

Se entrenaron dos modelos para evaluar sus fortalezas y limitaciones: un Gradient Boosting
y una red neuronal. El documento detalla todo el proceso, desde la generación de datos y
el preprocesamiento hasta la optimización de hiperparámetros. Se destaca la importancia de
la ingeniería de características (feature engineering) para lograr modelos con métricas de
desempeño adecuadas. Los modelos desarrollados permiten predecir el comportamiento de
vigas con distintas longitudes, materiales, tipos de sección y condiciones de contorno.

Finalmente, se implementó una interfaz gráfica simplificada, denominada Alabeam, que per-
mite realizar predicciones sin necesidad de conocimientos avanzados en cálculo estructural
o MEF. Esta herramienta demuestra el potencial del aprendizaje automático en fases de di-
seño, donde se requieren múltiples iteraciones de manera eficiente siendo capaz de ofrecer
resultados en menos de un segundo.
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ABSTRACT
This thesis presents the development of machine learning models to complement finite ele-
ment analysis (FEA). Synthetic datasets were generated from 1D beam models in Hyper-
Mesh, obtaining maximum displacement and maximum Von Mises stress as outputs. These
results were subsequently used to train machine learning models capable of making predic-
tions without performing FEA.

Two models were trained to assess their respective strengths and limitations: a Gradient Boos-
ting model and a neural network. The work details the entire workflow, from data generation
and preprocessing to hyperparameter optimization, emphasizing the crucial role of feature en-
gineering in achieving models with satisfactory performance metrics. The developed models
enable the prediction of beam behavior for various lengths, materials, cross-sectional types,
and boundary conditions.

Finally, a simplified graphical user interface, named Alabeam, was implemented, allowing
users to make predictions without advanced knowledge of structural analysis or FEA. This
tool demonstrates the potential of machine learning in design phases, where multiple itera-
tions are required efficiently, providing results in less than a second.

Keywords: Finite Element Method (FEM), Structural Analysis, Machine Learning, Neural Net-
works, Gradient Boosting, Surrogate Modeling, PyNastran, OptiStruct, Streamlit, Structural
Mechanics.
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Símbolos y abreviaturas

Símbolo Nombre Unidad

L Longitud de la viga mm
rext Radio exterior mm
rint Radio interior mm
t Espesor mm
b Base de la sección mm
h Altura de la sección mm
A Área de sección mm2

I Momento de inercia mm4

J Momento polar de inercia mm4

K Factor de longitud efectiva –
fe Matriz de cargas MEF N
Ke Matriz de rigidez MEF N/mm , N/rad, N·mm/rad
de Vector desplazamiento MEF mm/rad
W Módulo resistente mm3

E Módulo de elástico MPa (N/mm2)
ρ Densidad kg/mm3

ν Coeficiente de Poisson –
ρ Densidad kg/mm3

F Fuerza puntual N
M Momento puntual N·mm
N(x) Esfuerzo axial N
w Carga distribuida N/mm
u,w Desplazamiento mm
w(x) Desplazamiento a lo largo de x mm
umáx Desplazamiento (displacement) máximo mm
ε Deformación –
θ Rotación rad
σ Tensión (stress) MPa
MAE Mean Absolute Error mismas unidades del objetivo
MedAE Median Absolute Error mismas unidades del objetivo
RMSE Root Mean Squared Error mismas unidades del objetivo
MAPE Mean Absolute Percentage Error –
R2 Coeficiente de determinación –

Tabla 1. Glosario de símbolos y variables utilizadas en el proyecto.
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Capítulo 1. INTRODUCCIÓN
En el ámbito de la ingeniería estructural, la predicción del comportamiento de componentes
sometidos a cargas constituye una tarea esencial para garantizar la seguridad, la funcionali-
dad y la eficiencia de los diseños. Tradicionalmente, estos análisis se han abordado mediante
métodos clásicos, como la teoría de vigas, o bien mediante simulaciones numéricas avanza-
das, siendo el Método de los Elementos Finitos (MEF, en inglés Finite Element Method, FEM)
la técnica más extendida en la práctica profesional. Si bien el MEF proporciona una elevada
precisión y versatilidad, también implica un alto coste computacional y temporal, así como
la necesidad de conocimientos especializados para cada nuevo caso de carga, geometría o
material. Estas limitaciones se hacen especialmente evidentes en fases tempranas de diseño,
donde resulta necesario evaluar múltiples configuraciones estructurales de forma ágil [1].

En los últimos años, el auge del aprendizaje automático (machine learning, ML) y el análisis
de datos ha supuesto una transformación profunda en numerosas disciplinas de la ingeniería,
gracias a su capacidad para identificar y modelar patrones complejos a partir de grandes vo-
lúmenes de datos experimentales o simulados [2]. A diferencia de los métodos tradicionales,
el ML no requiere formular ni resolver de manera explícita las ecuaciones diferenciales que
describen el comportamiento físico de un sistema, sino que construye modelos predictivos
basados en la experiencia contenida en los datos. Esto permite obtener estimaciones rápidas
y, en muchos casos, con una precisión comparable a la de métodos numéricos convenciona-
les, pero con un coste computacional mucho menor.

La combinación de técnicas clásicas como el MEF con métodos basados en ML ha dado lugar
a enfoques híbridos FEM–ML, que ya se han explorado en campos como la ingeniería civil y
aeroespacial, mostrando un gran potencial para estimar el comportamiento mecánico de es-
tructuras con gran eficiencia. Gracias a estas ventajas, el aprendizaje automático se plantea
como un recurso complementario e incluso acelerador de los métodos clásicos de simula-
ción. En el presente trabajo se explorará esta sinergia, analizando cómo el ML puede apoyar
el análisis estructural y facilitar predicciones eficientes del comportamiento de componentes
estructurales sometidos a distintas condiciones de carga.

Este proyecto propone el desarrollo de una herramienta que combine técnicas de aprendizaje
automático con análisis estructural clásico, con el objetivo de predecir de forma automática
y eficiente los principales resultados de interés en el estudio de vigas: la tensión máxima
(Von Mises) y el desplazamiento máximo. Para ello, se utilizarán datos generados a partir
de modelos MEF creados automáticamente en HyperMesh y resueltos mediante OptiStruct,
abarcando una amplia variedad de combinaciones geométricas, materiales, condiciones de
contorno y cargas.
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Con el fin de controlar la complejidad del problema y facilitar el entrenamiento de los modelos,
se ha optado por acotar el estudio a vigas bidimensionales modeladas como elementos tipo
viga (1D), con distintas secciones, materiales y esquemas de carga. Este enfoque permite
evaluar con precisión la aplicabilidad del aprendizaje automático en problemas estructurales,
sin perder generalidad en cuanto a los principios fundamentales de la mecánica estructural.

Además del desarrollo del modelo predictivo, el proyecto incluye el diseño de una interfaz
gráfica interactiva, que permita a cualquier usuario introducir las condiciones de diseño y ob-
tener resultados de forma rápida e intuitiva. Como valor añadido, se incorporan funciones
de recomendación inteligente orientadas a la optimización estructural: por ejemplo, sugeren-
cias de materiales más ligeros o económicos que mantengan los requisitos de resistencia, o
propuestas de modificaciones geométricas en la sección.

En conjunto, este trabajo tiene un doble objetivo: por un lado, demostrar la viabilidad y utilidad
del aprendizaje automático como herramienta complementaria al análisis estructural clásico;
y por otro, desarrollar un software práctico, denominado Alabeam, que actúe como asistente
inteligente en el diseño y evaluación de vigas.

1.1 Planteamiento
El presente proyecto se fundamenta en la necesidad de agilizar el análisis estructural en fases
de diseño, donde resulta imprescindible evaluar múltiples alternativas en plazos reducidos. Si
bien el MEF es la referencia por su precisión y fiabilidad, su elevado coste computacional y
la exigencia de conocimiento especializado limitan su aplicación en procesos iterativos y en
exploraciones de diseño amplias.

En este marco, el aprendizaje automático ofrece una oportunidad para acelerar dichos aná-
lisis, al permitir la construcción de modelos predictivos capaces de estimar parámetros es-
tructurales clave con rapidez una vez entrenados. En este proyecto se propone el desarrollo
de un modelo de aprendizaje automático que, aprovechando la capacidad predictiva de estas
técnicas, estime con precisión la tensión y el desplazamiento máximos de vigas a partir de
sus características geométricas, materiales y de carga. Para ello, se empleará un conjunto de
datos generado mediante simulaciones MEF automatizadas, garantizando así que el modelo
aprenda sobre una base sólida y representativa.

Adicionalmente, se plantea la implementación de una interfaz gráfica orientada a facilitar la
interacción con el sistema, de modo que los usuarios puedan introducir las condiciones de
diseño de manera sencilla y obtener predicciones inmediatas sin necesidad de conocimien-
tos avanzados en simulación. La herramienta resultante, denominada Alabeam, se concibe
como un asistente inteligente destinado a apoyar el proceso de diseño estructural de vigas,
proporcionando resultados rápidos, accesibles y eficientes.
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1.2 Objetivos
El presente proyecto tiene como finalidad desarrollar una herramienta inteligente que combine
técnicas de aprendizaje automático con análisis estructural clásico, para ofrecer predicciones
fiables y eficientes del comportamiento de vigas bajo diversas condiciones de carga, geome-
tría, material y apoyo.

1.2.1. Objetivo general

Diseñar e implementar una solución basada en aprendizaje automático capaz de predecir de
forma precisa y eficiente las deformaciones y tensiones en vigas bidimensionales, utilizando
datos generados mediante simulaciones por elementos finitos (MEF). Asimismo, integrar es-
ta solución en una herramienta interactiva que proporcione recomendaciones estructurales
orientadas a la optimización del diseño.

1.2.2. Objetivos específicos

• Automatizar la generación de modelos estructurales de vigas mediante scripts en TCL
para HyperMesh, permitiendo crear configuraciones variadas en función de parámetros
como longitud, tipo de sección, material, apoyos y esquema de cargas.

• Desarrollar un script en Python para generar combinaciones estructurales y cargas
aleatorias, exportarlas a un archivo CSV y facilitar así generación de los modelos con
TCL.

• Ejecutar los modelos MEF en OptiStruct de forma masiva (batch) para simular aproxi-
madamente 4000 configuraciones distintas, obteniendo los resultados en archivos de
salida estructurados (.op2).

• Utilizar la librería PyNastran para extraer de forma automatizada los resultados clave
de las simulaciones: desplazamiento máximo y tensión máxima (Von Mises).

• Construir un conjunto de datos estructurado combinando parámetros de entrada y re-
sultados MEF, apto para el entrenamiento de modelos de regresión supervisada.

• Entrenar y comparar distintos modelos de aprendizaje automático, como LightGBM
(Gradient Boosting) y redes neuronales artificiales.

• Evaluar el rendimiento de los modelos mediante métricas como MAE, RMSE y R2, y
analizar su precisión en la estimación de variables estructurales frente a las soluciones
MEF.

• Implementar una aplicación interactiva con Streamlit (Alabeam), que permita introducir
condiciones de diseño y obtener predicciones de forma rápida e intuitiva, con posibilidad
de comparar resultados entre modelos.

• Incorporar un sistema de recomendaciones inteligentes que sugiera materiales alterna-
tivos o modificaciones en la sección de la viga para mejorar el diseño desde un punto
de vista estructural, económico o funcional.

12



Predicción Inteligente del Comportamiento Mecánico de
Vigas usando Machine Learning y Análisis por Elementos
Finitos
Daniel López López

1.3 Beneficios del proyecto
El desarrollo de este proyecto aporta una serie de beneficios significativos tanto desde el pun-
to de vista técnico como práctico, con un especial énfasis en su aplicabilidad en el ámbito del
diseño estructural asistido por inteligencia artificial. A continuación, se detallan las principales
ventajas que ofrece la herramienta desarrollada:

• Reducción del tiempo de análisis: permite obtener estimaciones fiables del com-
portamiento estructural sin necesidad de realizar simulaciones por elementos finitos
completas para cada caso, lo que acelera el proceso de diseño y validación.

• Optimización estructural automatizada: incorpora recomendaciones inteligentes que
sugieren configuraciones alternativas (materiales, secciones, etc.) manteniendo la se-
guridad estructural, con el objetivo de reducir el peso o el coste del componente.

• Apoyo a la toma de decisiones técnicas: la herramienta no solo ofrece predicciones
numéricas, sino que proporciona sugerencias basadas en criterios ingenieriles y de
fabricación, facilitando decisiones más informadas durante las fases iniciales del diseño.

• Aplicabilidad en entornos industriales: Alabeam es especialmente útil en sectores
como la ingeniería civil, la automoción, la aeronáutica o el diseño de estructuras me-
tálicas, donde los análisis estructurales son frecuentes y el ahorro de tiempo resulta
crítico.

• Valor académico y formativo: el proyecto puede servir como recurso didáctico para
estudiantes y docentes, facilitando la comprensión del comportamiento estructural y del
impacto de los parámetros de diseño, a la vez que introduce conceptos de inteligencia
artificial aplicada a la ingeniería.

• Escalabilidad y adaptabilidad: gracias a su arquitectura modular y su interfaz acce-
sible, la herramienta es fácilmente ampliable a otros tipos de elementos estructurales
(pórticos, placas, etc.) o incluso a otros dominios como la optimización topológica o la
fabricación aditiva.
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Capítulo 2. MARCO TEÓRICO Y MARCO TEC-
NOLÓGICO
El presente capítulo tiene como objetivo establecer los fundamentos teóricos que sustentan
el desarrollo de este trabajo y las herramientas desarrolladas. Dado que el proyecto combi-
na conceptos propios de la ingeniería estructural con técnicas de aprendizaje automático, el
marco teórico se organiza en dos bloques principales: cálculo estructural y aprendizaje auto-
mático. Luego se describe el marco tecnológico que sustenta la solución propuesta en este
trabajo.

2.1 Marco Teórico
En primer lugar, se abordan los principios de la teoría clásica de vigas, base del análisis es-
tructural de componentes lineales sometidos a cargas. Se revisan los métodos tradicionales
de resolución, las hipótesis fundamentales del modelo de Euler-Bernoulli y la transición hacia
enfoques numéricos más generales, como el Método de los Elementos Finitos (MEF). Este
método constituye la herramienta principal para el análisis computacional de estructuras, per-
mitiendo evaluar el comportamiento de vigas con diferentes condiciones de contorno, tipos
de carga y geometrías de sección.

En segundo lugar, se introduce el marco teórico del aprendizaje automático (Machine Lear-
ning, ML), con especial énfasis en los métodos supervisados aplicados a problemas de regre-
sión. En este contexto, se abordan los principios fundamentales del entrenamiento, validación
y evaluación de modelos predictivos, incluyendo tanto algoritmos de tipo ensamble como el
HistGradientBoostingRegressor o redes neuronales. Estos enfoques permiten aprender las
relaciones no lineales existentes entre las características geométricas, materiales y de carga
de las vigas, y las respuestas estructurales correspondientes, como la tensión y el desplaza-
miento máximos. Con ello, se logra estimar dichas variables con alta precisión y en tiempos
de cálculo significativamente menores que los requeridos por los métodos numéricos tradi-
cionales basados en el MEF.

De este modo, en esta sección se establece la base teórica necesaria para comprender el
desarrollo posterior del modelo propuesto y justificar las decisiones adoptadas en el trabajo.

2.1.1. Sistema de coordenadas y unidades

A lo largo del presente proyecto se adopta un sistema de referencia cartesiano tridimensional
con el fin de describir de forma coherente la geometría, las cargas y las respuestas estruc-
turales de las vigas analizadas. Las vigas se consideran contenidas en el plano XY , con el
eje X coincidente con el eje longitudinal de la viga y el eje Y perpendicular a ella dentro del
mismo plano. El eje Z se define como el eje que emerge del plano XY como se muestra en
la Figura 2.1.
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Figura 2.1. Representación del sistema de coordenadas

Las cargas aplicadas pueden actuar en la dirección X (cargas axiales) o en la dirección Y

(cargas transversales), mientras que los momentos se aplican alrededor del eje Z, produ-
ciendo esfuerzos de flexión en el plano de la viga. Esta convención se mantiene de forma
consistente tanto en la formulación teórica como en la generación de los modelos numéri-
cos y en el tratamiento de datos para el aprendizaje automático. De este modo, todos los
resultados de desplazamientos, tensiones y reacciones se expresan en el mismo sistema de
coordenadas, garantizando la coherencia entre simulaciones FEM y modelos predictivos.

Sistema de unidades

En todo el trabajo se utiliza un sistema coherente basado en milímetros (mm), newtons (N) y
megapascales (MPa). Esto implica, en particular, la equivalencia:

1MPa = 1N/mm2.

Las magnitudes principales empleadas y sus unidades se muestran en la Tabla 2.1.

Tabla 2.1. Unidades adoptadas en el trabajo

Magnitud Unidad

Longitud L, dimensiones de sección b, h, etc mm

Área A mm2

Momento de inercia Iz mm4

Módulo resistente Wz mm3

Desplazamientos u, v mm
Módulo elástico E, tensiones σ MPa (N/mm2)
Fuerzas nodales FX , FY N
Momentos MZ Nmm

2.1.2. Cálculo estructural

El análisis estructural constituye uno de los pilares fundamentales de la ingeniería, ya que
permite determinar la respuesta de los elementos que componen una estructura frente a las
cargas que actúan sobre ella. Entre estos elementos, las vigas ocupan un lugar destacado
por su amplia utilización en la construcción, la ingeniería mecánica y la industria en general.
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Una viga puede definirse como un elemento lineal sometido principalmente a esfuerzos de
flexión y cortante, aunque también puede verse afectada por cargas axiales o momentos
aplicados. En el contexto de este proyecto, se consideran vigas bidimensionales en el plano
XY , capaces de soportar cargas puntuales en las direcciones X e Y , así como momentos
aplicados alrededor del eje Z. Asimismo, se consideran dos configuraciones típicas de apoyo:
vigas en voladizo y vigas biapoyadas. Las vigas en voladizo presentan un extremo empotrado
y el otro libre, lo que genera máximos esfuerzos de flexión en la zona del empotramiento y
desplazamiento en el extremo libre. Por su parte, las vigas biapoyadas se apoyan en ambos
extremos, permitiendo el giro pero impidiendo el desplazamiento vertical, y representan una
de las condiciones de contorno más comunes en el análisis estructural clásico.

Tradicionalmente, el cálculo de vigas se ha abordado mediante métodos analíticos basados
en la teoría clásica de Euler-Bernoulli [3], que establece las relaciones entre cargas, esfuer-
zos internos, tensiones y desplazamientos bajo hipótesis simplificadoras. No obstante, este
enfoque resulta limitado cuando se requiere analizar sistemas más complejos, con múltiples
apoyos, cargas combinadas o secciones de geometría variable.

Para superar estas limitaciones, el Método de los Elementos Finitos (MEF) se presenta como
una herramienta numérica de gran versatilidad, capaz de modelar el comportamiento estruc-
tural de vigas de forma generalizada. A través de la discretización del dominio estructural y
la formulación matricial de las ecuaciones de equilibrio, el MEF permite obtener resultados
precisos y fácilmente automatizables, facilitando el análisis de un elevado número de confi-
guraciones con un mismo marco teórico. [1]

La Figura 2.2 ilustra el proceso de conversión de un modelo CAD tridimensional de un anclaje
a su correspondiente malla de elementos finitos, paso fundamental para posibilitar su análisis
estructural mediante el método de los elementos finitos (MEF).

Figura 2.2. Geometría y mallado MEF de un anclaje

Finalmente, dado que en este proyecto se han empleado vigas con distintos tipos de sección
transversal, también se revisan los conceptos fundamentales relacionados con las propie-
dades geométricas de la sección, como el área y el momento de inercia, parámetros que
influyen directamente en la rigidez y el comportamiento estructural del elemento.
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Introducción al cálculo de vigas

El análisis de vigas constituye uno de los problemas fundamentales en la ingeniería estruc-
tural. Una viga puede definirse como un elemento estructural esbelto cuya longitud es consi-
derablemente mayor que sus dimensiones transversales, y que está sometido principalmente
a cargas perpendiculares a su eje longitudinal. Estas cargas generan esfuerzos internos de
cortante y flexión, que determinan las tensiones y deformaciones en el elemento.

El estudio clásico del comportamiento de vigas se basa en la teoría de Euler–Bernoulli, tam-
bién conocida como teoría de vigas esbeltas. Esta formulación parte de una serie de hipótesis
simplificadoras que permiten expresar de forma analítica la relación entre las cargas aplica-
das y la respuesta estructural:

• El material es lineal, elástico e isótropo, y cumple la ley de Hooke.

• Las deformaciones son pequeñas, de modo que las ecuaciones de equilibrio pueden
considerarse lineales.

• Las secciones planas antes de la deformación permanecen planas y perpendiculares
al eje neutro después de deformarse.

Bajo estas hipótesis, el comportamiento de una viga en el plano XY puede describirse me-
diante la ecuación diferencial de la flexión (las expresiones que siguen se toman de [3, cap. 2–
7]):

d2

dx2

(
EI

d2w(x)

dx2

)
= q(x)

donde E es el módulo de elasticidad del material, I es el momento de inercia de la sección
respecto al eje neutro, w(x) es el desplazamiento vertical del eje de la viga y q(x) representa
la carga distribuida aplicada.

A partir de esta ecuación, pueden obtenerse las expresiones para los esfuerzos internos:

M(x) = −EI
d2w(x)

dx2

V (x) =
dM(x)

dx

donde M(x) es el momento flector y V (x) el esfuerzo cortante. Las tensiones normales en
la fibra a una distancia y del eje neutro se calculan como:

σ(x, y) =
M(x) y

I

En el caso de vigas con cargas axiales o momentos aplicados alrededor del eje Z, las ecua-
ciones de equilibrio deben ampliarse para incluir el efecto de las fuerzas longitudinales N(x),
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obtenidas a partir de la relación:

dN(x)

dx
+ px(x) = 0

donde px(x) es la carga distribuida en dirección axial.

El cálculo analítico de vigas se realiza aplicando condiciones de contorno que dependen del
tipo de apoyo (empotrado, articulado o libre), resolviendo las ecuaciones diferenciales de
equilibrio y obteniendo los diagramas de cortante, momento y desplazamiento. En los casos
más simples como vigas biapoyadas o en voladizo con cargas uniformes o puntuales, las
soluciones pueden obtenerse de forma exacta mediante fórmulas conocidas. Sin embargo,
para configuraciones más complejas, con múltiples cargas, secciones variables o apoyos
intermedios, la resolución analítica resulta impracticable.

Por este motivo, el análisis estructural moderno recurre a métodos numéricos que permiten
resolver el problema de forma generalizada. Entre ellos, el Método de los Elementos Fini-
tos (MEF) se ha consolidado como la herramienta más versátil y precisa, ya que permite
discretizar la viga en elementos y formular las ecuaciones de equilibrio en forma matricial,
adaptándose fácilmente a cualquier tipo de geometría, condición de contorno o esquema de
carga [1]

Limitaciones del cálculo manual

Aunque el cálculo analítico de vigas basado en la teoría de Euler–Bernoulli ofrece resultados
exactos para un conjunto limitado de configuraciones, su aplicabilidad práctica se ve restrin-
gida por múltiples factores relacionados con la complejidad geométrica, las condiciones de
contorno y la naturaleza de las cargas. La formulación diferencial que describe la flexión de
una viga requiere integrar varias veces las ecuaciones de equilibrio y aplicar correctamente
las condiciones de contorno para obtener el campo de desplazamientos. Este procedimiento,
aunque viable en casos simples, se vuelve ineficiente o directamente inabordable en estruc-
turas reales.

Entre las principales limitaciones del cálculo manual pueden destacarse las siguientes:

• Geometrías complejas: las expresiones analíticas sólo son válidas para vigas de sec-
ción constante. Cuando la sección varía a lo largo del eje, el momento de inercia I(x)

deja de ser constante, lo que impide obtener soluciones cerradas.

• Condiciones de contorno múltiples o mixtas: la presencia de apoyos intermedios,
empotramientos parciales o combinaciones de restricciones dificulta enormemente la
resolución manual de las ecuaciones diferenciales.

• Cargas no uniformes o combinadas: cuando la viga está sometida simultáneamente
a cargas distribuidas, puntuales o momentos aplicados, la superposición de efectos
requiere realizar integraciones sucesivas, lo que incrementa el riesgo de errores y la
complejidad algebraica.
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• Materiales heterogéneos o anisótropos: la variación espacial del módulo de elasti-
cidad E(x) introduce no linealidades que imposibilitan la resolución exacta mediante
métodos tradicionales.

• Análisis de sistemas estructurales: el estudio de pórticos, entramados o estructuras
continuas formadas por múltiples vigas conectadas requiere formular sistemas de ecua-
ciones simultáneas de gran tamaño, lo que excede la capacidad del cálculo manual.

Además de estas limitaciones prácticas, el cálculo manual carece de flexibilidad y automati-
zación. Cada modificación en las cargas, geometría o apoyos obliga a repetir todo el proceso
de resolución, lo que lo hace ineficiente en entornos de diseño iterativo o de optimización
estructural. En consecuencia, resulta necesario recurrir a métodos numéricos que generali-
cen la formulación teórica y permitan resolver de manera sistemática cualquier configuración
estructural.

Entre estos métodos, el MEF destaca por su capacidad para discretizar la estructura en ele-
mentos simples y resolver las ecuaciones de equilibrio de forma matricial. Este enfoque no
solo amplía el rango de problemas tratables, sino que también facilita la automatización y la
integración con procesos computacionales avanzados, como el aprendizaje automático, que
se abordan en capítulos posteriores.

Fundamentos del Método de los Elementos Finitos aplicado a vigas 2D

El Método de los Elementos Finitos constituye una de las herramientas numéricas más em-
pleadas en ingeniería para la resolución de problemas estructurales. Su principal ventaja
radica en la capacidad de analizar estructuras con geometrías y condiciones de contorno ar-
bitrarias mediante la discretización del dominio (Ω) continuo en un número finito de elementos
más simples, interconectados en nodos como se muestra en la Figura 2.3.

Figura 2.3. Aproximación lineal de la geometría

En el caso de estructuras tipo viga, resulta especialmente eficiente el uso de elementos uni-
dimensionales (1D). Este tipo de elementos permiten representar el comportamiento axial,
flexional y de cortante de una barra sin necesidad de modelar su geometría tridimensional
completa. De este modo, se reduce drásticamente el número de grados de libertad y, por
tanto, el coste computacional de la simulación, manteniendo una precisión adecuada para el
análisis de estructuras esbeltas. Esta simplificación es especialmente ventajosa cuando se
requiere generar un elevado número de modelos, como en el presente trabajo, orientado a la
creación de una base de datos para el entrenamiento de modelos de aprendizaje automático.

19



Predicción Inteligente del Comportamiento Mecánico de
Vigas usando Machine Learning y Análisis por Elementos
Finitos
Daniel López López

La Figura 2.4 muestra un modelo mallado mediante elementos unidimensionales (1D), los
cuales conforman el modelo MEF global. Cada elemento posee su propio sistema de re-
ferencia local, donde se definen sus propiedades y ecuaciones de comportamiento. De este
modo, el modelo de elementos finitos se construye a partir de la unión de múltiples elementos
individuales, que al ensamblarse forman la estructura global.

Figura 2.4. Representación de la discretización de un elemento 1D

En el caso de una viga plana contenida en el sistema XY , cada elemento de viga se define
por dos nodos situados en sus extremos, con tres grados de libertad por nodo: desplaza-
miento axial u en la dirección X, desplazamiento transversal v en la dirección Y y rotación
θz alrededor del eje Z. El vector de desplazamientos nodales del elemento puede expresarse
como [4]:

de =



u1
v1
θ1
u2
v2
θ2


La relación entre las fuerzas nodales y los desplazamientos se establece mediante la matriz
de rigidez del elemento:

fe = Ke de

Para un elemento de viga-columna 2D (que considera esfuerzos axiales y de flexión en el
plano), la matriz de rigidez local en coordenadas del elemento se expresa como:

Ke =



AE
L 0 0 −AE

L 0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L2
2EI
L

−AE
L 0 0 AE

L 0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 −6EI

L2

0 6EI
L2

2EI
L 0 −6EI

L2
4EI
L


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En la matriz de la página anterior, A es el área de la sección transversal, E el módulo de
elasticidad, I el momento de inercia y L la longitud del elemento.

Cuando la viga no está alineada con el eje X, se requiere transformar las magnitudes del sis-
tema local al sistema global de coordenadas. Para ello se utiliza una matriz de transformación
T, de modo que la rigidez en coordenadas globales se obtiene como:

K
(g)
e = TTKeT

Tras el cálculo de las matrices de rigidez de todos los elementos, se procede al ensamblaje
en una matriz global K, que relaciona el vector global de desplazamientos d con el de fuerzas
nodales externas F:

Kd = F

El sistema se resuelve imponiendo las condiciones de contorno adecuadas por ejemplo, des-
plazamientos nulos en apoyos o empotramientos y aplicando las cargas externas en los no-
dos correspondientes. La resolución del sistema proporciona los desplazamientos nodales, a
partir de los cuales pueden obtenerse los esfuerzos internos, tensiones y deformaciones de
cada elemento.

El uso de elementos 1D de viga constituye, por tanto, una solución equilibrada entre precisión
y eficiencia. Este enfoque permite representar de forma fiable el comportamiento estructural
de vigas rectas bajo cargas axiales, transversales y momentos flectores, al tiempo que po-
sibilita la generación automática de miles de modelos con distintos materiales, secciones y
condiciones de contorno, lo cual resulta esencial para la aplicación de técnicas de aprendizaje
automático basadas en grandes conjuntos de datos.

Tipos de secciones transversales y propiedades geométricas

El comportamiento estructural de una viga depende de manera directa tanto de las propieda-
des geométricas de su sección transversal como de las características mecánicas del mate-
rial empleado. Estos parámetros determinan la rigidez del elemento frente a cargas axiales,
cortantes y de flexión, y condicionan la magnitud de las tensiones y desplazamientos que se
generan bajo una determinada carga.

Influencia de la geometría de la sección La geometría de la sección transversal se carac-
teriza mediante propiedades como el área A y el momento de inercia I, los cuales intervie-
nen de forma explícita en la formulación de las ecuaciones del comportamiento estructural.
Mientras que el área define la capacidad portante frente a esfuerzos axiales, el momento de
inercia determina la resistencia del elemento frente a la flexión. Un valor mayor de I implica
una mayor rigidez a flexión y, por tanto, menores desplazamientos y tensiones en servicio.
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En este proyecto se han considerado varios tipos de secciones transversales representativas
de distintas configuraciones estructurales:

• Sección rectangular: de dimensiones base b y altura h, con un momento de inercia da-
do por I = b h3

12 . Es una de las secciones más comunes y presenta un comportamiento
simétrico frente a la flexión en el plano principal.

• Sección rectangular hueca: definida por dimensiones exteriores be, he y dimensiones
interiores bi, hi. Su momento de inercia se obtiene como la diferencia entre las inercias
de los rectángulos exterior e interior:

I =
be h

3
e − bi h

3
i

12

Esta configuración optimiza la relación rigidez-peso, reduciendo masa sin pérdida sig-
nificativa de capacidad resistente.

• Sección circular maciza: de radio r, cuyo momento de inercia respecto al eje neutro es
I = π r4

4 . Se emplea en elementos donde la carga puede actuar en distintas direcciones
y se requiere un comportamiento isotrópico.

• Sección circular hueca: de radios exterior re e interior ri, con momento de inercia

I =
π

4
(r4e − r4i )

Este tipo de sección presenta una elevada eficiencia estructural, combinando buena
rigidez a flexión y torsión con un peso reducido.

• Sección en I: formada por un alma y dos alas, concentra la mayor parte del material
lejos del eje neutro, maximizando el momento de inercia con una cantidad mínima de
material. Por ello, ofrece una rigidez a flexión muy elevada con un peso relativamente
bajo, siendo la más utilizada en estructuras metálicas.

En general, secciones con un momento de inercia mayor reducen los desplazamientos verti-
cales y las tensiones máximas bajo una misma carga, mientras que las secciones huecas o
aligeradas permiten mantener una buena rigidez con menor masa, lo que resulta ventajoso
en aplicaciones donde el peso es un factor crítico.

Influencia del material El material constituye otro de los factores determinantes en el com-
portamiento de una viga. Sus propiedades mecánicas principalmente el módulo de elasti-
cidad E y el límite elástico σy influyen directamente en la rigidez y la capacidad resistente
del elemento. El módulo E interviene en la relación constitutiva entre tensión y deformación
(σ = Eε), de modo que materiales con un valor de E mayor presentan menores deformacio-
nes bajo una misma carga aplicada [5].
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En el presente trabajo se han considerado cuatro materiales metálicos representativos: ace-
ro al carbono, acero inoxidable, aluminio y titanio. Los dos primeros presentan una elevada
rigidez y resistencia, lo que los hace idóneos para estructuras sometidas a grandes esfuer-
zos, mientras que el aluminio y el titanio destacan por su menor densidad y buena relación
resistencia-peso, siendo habituales en aplicaciones donde el peso es un factor crítico. De esta
forma, la selección del material implica un compromiso entre rigidez, peso y capacidad de de-
formación, criterios que condicionan tanto el comportamiento estructural como la respuesta
obtenida por los modelos de predicción desarrollados.

Tensión equivalente de Von Mises y criterio de fluencia En análisis estructural de ma-
teriales dúctiles se emplea de forma predominante el criterio de energía de distorsión, cuyo
indicador escalar es la tensión equivalente de Von Mises. Este escalar sintetiza un estado
triaxial de tensiones en una única magnitud comparables con el límite elástico del material,
de modo que la fluencia se produce cuando

σvm ≥ σy.

En términos de las tensiones principales σ1, σ2, σ3, la definición clásica es [3]:

σvm =

√
1
2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
=

√
3 J2,

donde J2 es el segundo invariante del desviador de tensiones. En estado de tensión plana
(σ3 = 0), habitual en láminas o cuando las tensiones fuera del plano son despreciables, se
obtiene

σvm =
√
σ2
x + σ2

y − σxσy + 3 τ2xy.

En vigas sometidas principalmente a flexión y cortante, la contribución dominante a σvm pro-
viene de la tensión normal de flexión y, en menor medida, de la cortadura. Los solvers de
elementos finitos para elementos 1D (como CBEAM) calculan la envolvente de σvm en fibras
de la sección, lo que permite identificar directamente la zona crítica del elemento.

Razones para utilizar σvm como objetivo de entrenamiento:

• Es invariante frente a rotaciones de ejes y agrega de forma coherente estados multi-
axiales en un único escalar interpretable frente a σy.

• Presenta una superficie de fluencia suave y diferenciable, más apropiada para ajuste
numérico y para modelos de aprendizaje que la alternativa de Tresca, que es más
conservadora pero no suave.

• Correlaciona bien con el inicio de la plasticidad en materiales metálicos dúctiles isotró-
picos, que son los materiales considerados en este trabajo.

• Está disponible de forma directa en la salida del solver, reduciendo ambigüedades de
posproceso y facilitando la trazabilidad entre simulación y modelo.
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Limitaciones y alcance. El uso de σvm es adecuado para materiales dúctiles en régimen
elástico-lineal hasta las proximidades de σy. No es un criterio de rotura frágil, para materiales
cuasi-frágiles o fenómenos dominados por tracción pura podrían ser preferibles otros indi-
cadores. En este proyecto, centrado en aceros, aluminio y titanio en el marco elástico, σvm
resulta un objetivo robusto y físicamente significativo para el entrenamiento y evaluación de
los modelos predictivos, ya que todos los materiales seleccionados son metales dúctiles.

2.1.3. Aprendizaje automático

En los últimos años, el aprendizaje automático se ha consolidado como una herramienta de
gran utilidad en el ámbito de la ingeniería, gracias a su capacidad para identificar patrones
complejos y realizar predicciones precisas a partir de grandes volúmenes de datos. A diferen-
cia de los métodos analíticos o numéricos tradicionales, que requieren la formulación explícita
de las ecuaciones que rigen el comportamiento físico, los modelos de ML aprenden directa-
mente las relaciones entre las variables de entrada y salida a partir de los datos disponibles.

En el contexto del análisis estructural, esta aproximación resulta especialmente valiosa, ya
que permite aproximar el comportamiento de elementos como las vigas sin necesidad de
realizar una simulación completa mediante el Método de los Elementos Finitos para cada ca-
so. Una vez entrenado, el modelo es capaz de predecir en cuestión de milisegundos variables
estructurales de interés como la tensión máxima y el desplazamiento máximo a partir de las
características geométricas, de material y de carga del elemento.

El proceso general del aprendizaje automático puede dividirse en varias etapas: recopilación
y preparación de los datos, selección de las variables más representativas (feature enginee-
ring), elección del modelo, entrenamiento mediante un conjunto de datos de entrenamiento y
posterior validación del rendimiento con un conjunto de prueba independiente. La calidad de
las predicciones depende tanto de la representatividad de los datos de entrada como de la
capacidad del modelo para generalizar patrones no vistos durante el entrenamiento.

En este proyecto se han empleado dos tipos de modelos supervisados de regresión con
el objetivo de comparar su precisión y comportamiento: un HistGradientBoostingRegressor
(HGBR) y una red neuronal artificial (RNA). El primero pertenece a la familia de los modelos
basados en árboles de decisión y se caracteriza por su eficiencia y robustez frente a datos
tabulares con posibles interacciones no lineales. La red neuronal, por su parte, constituye un
enfoque más flexible capaz de aproximar funciones de alta complejidad, aunque requiere un
mayor número de parámetros y un proceso de entrenamiento más cuidadoso para evitar el
sobreajuste.

El análisis comparativo entre ambos enfoques permite evaluar las ventajas e inconvenientes
de cada técnica en la predicción de resultados estructurales, y valorar su idoneidad para la
integración en herramientas de diseño predictivo y optimización estructural.
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Fundamentos del aprendizaje automático y la regresión supervisada

En regresión supervisada se busca un modelo fθ que aproxime la relación y ≈ fθ(x) entre
un conjunto de características x ∈ Rp (propiedades geométricas, de material, condiciones de
contorno y cargas) y una respuesta estructural continua y (p. ej., tensión o desplazamiento
máximos). El entrenamiento consiste en minimizar el riesgo empírico

R̂(θ) =
1

N

N∑
i=1

L
(
yi, fθ(xi)

)
,

con pérdidas típicas MSE/MAE y regularización para favorecer la generalización [6]. La va-
lidación (hold-out, CV k-fold o CV con grupos por geometría/sección) estima el rendimiento
fuera de la muestra [7] y guía la selección de hiperparámetros, evitando fuga de información
cuando existen instancias muy correlacionadas.

En problemas estructurales, el diseño de rasgos (feature engineering) es clave: incorporar
escalas físico-dimensionadas (p. ej., términos del tipo L3/EI o L4/EI) y razones adimen-
sionales (esbeltez, h/b, re/t, etc.) mejora la estabilidad numérica y reduce la varianza del
estimador al alinear el modelo con la teoría de vigas. Esta idea es compatible con modelos
de muy distinta naturaleza:

• Modelos basados en árboles (p. ej., HistGradientBoostingRegressor): capturan inter-
acciones y no requieren estandarización de entradas; la regularización efectiva surge
de la profundidad, el tamaño mínimo de hoja, el learning rate y el subsampling.

• Redes neuronales: requieren escalado/normalización de entradas; su mayor capaci-
dad para relaciones no lineales se controla con early stopping, L2 y/o dropout [8].

El rendimiento debe reportarse con métricas absolutas (RMSE, MAE) y relativas (MAPE
cuando procede), y, en este contexto, con errores normalizados por escalas físicas (p. ej.,
desplazamiento normalizado por L3/EI o L4/EI según el esquema de carga/contorno), lo
que facilita interpretar la precisión en términos de la teoría de vigas.

Rasgos físico-informados y escalas

Con el objetivo de guiar el aprendizaje mediante conocimiento físico, se han definido caracte-
rísticas que reflejan directamente los mecanismos de rigidez y la influencia de las condiciones
de contorno y de las cargas. A nivel conceptual:

Propiedades de sección y material Se emplean área A, momento de inercia a flexión Iz,
módulo resistente Wz = Iz/(h/2) y una aproximación de la inercia torsional J (tipo Saint-
Venant para secciones delgadas [3]) como indicadores de rigidez. El módulo elástico E se
incorpora a través de EI, magnitud central en la teoría de vigas, junto con densidad o límites
resistentes cuando procede. Derivados útiles:

EI,
Iz
A2

,
J

A
, rz =

√
Iz
A
,

L

rz
.
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Estas magnitudes capturan rigideces efectivas y esbeltez, que correlacionan con desplaza-
mientos y tensiones.

Condiciones de contorno: longitud efectiva Las constantes de la solución de la viga
dependen del tipo de apoyo/empotramiento. Para incorporarlo de forma compacta se utiliza
un factor de longitud efectiva K (función del par de apoyos) y sus potencias/interacciones:

Leff = K L,
L3
eff

EI
,
L4
eff

EI
,
EI

Leff
,
EI

L2
eff

.

La Tabla 2.2 muestra los valores típicos de K (referencia [3]) para determinar la longitud
efectiva en una viga.

Tabla 2.2. Factores de longitud efectiva K

Configuración estructural K

Voladizo: empotrado–libre 2.0
Voladizo invertido: libre–empotado 2.0
Biapoyada: articulado–articulado 1.0
Empotrada en ambos extremos: empotrado–empotado 0.5
Empotrado–articulado (o articulado–empotrado) 0.7

Así se aproximan, de manera unificada, las distintas constantes de proporcionalidad de los
desplazamientos en función del contorno, mejorando la transferibilidad del modelo entre con-
figuraciones.

Cargas agregadas y escalas de respuesta Se agregan componentes de carga por di-
rección (p. ej., FY , FX ) y momentos aplicados en Z, junto con posiciones adimensionales
x/L cuando existen. Se definen escalas físicas que aproximan el orden de magnitud de la
respuesta:

escala de desplazamiento: δscale ∼
FY L

3

EI
, δ

(eff)
scale ∼

FY L
3
eff

EI
,

FY

L
(intensidad),

escala de tensión: σscale ∼
Mref

Wz
,

donde Mref es una relación del momento máximo (p. ej., Pab/L para cargas puntuales en viga
simplemente apoyada, extendido de forma aditiva para varias acciones). Estas escalas, y sus
interacciones, informan al modelo sobre cómo varían wmax y σmax con L, EI, la distribución
de cargas y el contorno.

Interacciones y transformaciones Se incluyen interacciones físicamente motivadas (p. ej.,
σscale ·Leff , Leff ·L3/EI) y transformaciones logarítmicas suaves (log(1+x)) para estabilizar
rangos amplios y aproximar relaciones potenciales. En árboles de gradiente estas expan-
siones reducen la profundidad necesaria; en redes neuronales facilitan la optimización y la
calibración de la salida.
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Implicaciones para HGBR y RNA Los modelos tipo HGBR aprovechan de forma nati-
va particiones por región de características sin requerir estandarización; las escalas físico-
informadas mejoran su sesgo inductivo y la extrapolación local. En la RNA, además del es-
calado de entradas, el uso de Leff , EI y razones adimensionales reduce el condicionamiento
del problema y acelera la convergencia. En ambos casos, la validación por grupos (p. ej., por
tipo de sección o familia geométrica) evita sobreestimar el rendimiento cuando hay instancias
muy similares.

En conjunto, este diseño de características integra de forma explícita la teoría de vigas (rigi-
dez por flexión EI, efecto del contorno vía K, escalas L3/EI y L4/EI y métricas de sección
Wz, rz) dentro del proceso de aprendizaje, lo que permite a los modelos predecir con mayor
fidelidad las variables objetivo (tensión y desplazamiento máximos) y facilita comparar, en
condiciones equitativas, el desempeño de HistGradientBoostingRegressor y de la red neuro-
nal.

Modelo basado en árboles: HistGradientBoostingRegressor

[9], [10]

El HistGradientBoostingRegressor (HGBR) es un método de boosting de gradiente para re-
gresión que utiliza árboles de decisión como aprendices débiles y una discretización en his-
togramas para acelerar el entrenamiento. Su idea central es construir un modelo aditivo

FM (x) =

M∑
m=1

ν hm(x),

donde hm es un árbol de decisión ajustado sobre los residuos (o, más rigurosamente, el
negativo del gradiente de la pérdida) calculados respecto al modelo acumulado Fm−1, y ν ∈
(0, 1] es el learning rate (shrinkage). En cada iteración,

g
(m)
i = −

∂L
(
yi, F (xi)

)
∂F

∣∣∣∣∣
F=Fm−1

,

y el árbol hm se ajusta para aproximar g(m). El proceso reduce iterativamente el error de en-
trenamiento manteniendo un buen control de la varianza gracias al shrinkage, la profundidad
limitada de los árboles y restricciones de hoja.

Discretización por histogramas Antes de buscar cortes, HGBR binariza cada caracterís-
tica en un número fijo de bloques (bins). Esto: reduce el coste computacional de evaluar
candidatos de partición, aporta regularización adicional al suavizar ruido, hace que el método
sea robusto a escalado y valores extremos moderados.
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Pérdida, regularización y robustez La pérdida típica es MSE, aunque en presencia de
atípicos y heteroscedasticidad puede emplearse Huber o Quantile (para intervalos de predic-
ción). La regularización se controla mediante:

• Learning rate ν (p. ej., 0.02–0.1): valores menores requieren más árboles pero suelen
generalizar mejor.

• Estructura del árbol: max_leaf_nodes (p. ej., 16–64) o max_depth (3–8).

• Tamaño de hoja: min_samples_leaf (p. ej., 20–200) limita el sobreajuste local.

• L2 sobre los valores de hoja (l2_regularization) y submuestreo estocástico de fila-
s/columnas cuando esté disponible.

• Bins: max_bins (p. ej., 64–255) controla la granularidad de cortes.

Con early stopping (fracción de validación 10–20 %), el número de iteraciones M se deter-
mina automáticamente (típicamente unas centenas a mil+).

Preprocesado y rasgos Los árboles no requieren estandarización. No obstante, la inclu-
sión de rasgos físico-informados (p. ej., EI, Leff , L3

eff/EI, Wz, rz, esbeltez L/rz) mejora el
sesgo inductivo: el modelo parte de relaciones cercanas a la teoría de vigas y necesita me-
nos profundidad para captarlas. Las variables categóricas (tipo de apoyo, tipo de sección)
deben tratarse como categóricas (one-hot o manejo nativo si la implementación lo permite)
para evitar una falsa ordenación.

Diagnóstico e interpretabilidad

• Importancia de características (gain/permutación) para identificar los predictores domi-
nantes (suele destacar EI, Leff , escalas ∼ L3/EI y Wz en tensiones).

• Dependencia parcial (PDP) y ICE para estudiar cómo varían wmáx y σmáx con L, EI,
FY o MZ , manteniendo el resto fijo.

• Análisis de errores por familia (sección, apoyo, rango de cargas) para detectar sesgos
sistemáticos.

Ventajas y limitaciones Ventajas: entrenamiento rápido, robustez a valores atípicos (outliers)
leves (con Huber), poco preprocesado, buena interpretación local y fuerte rendimiento en
datos tabulares. Limitaciones: extrapola peor fuera del dominio de entrenamiento (típico en
árboles) y puede infraestimar tendencias suaves si falta profundidad o bins.

28



Predicción Inteligente del Comportamiento Mecánico de
Vigas usando Machine Learning y Análisis por Elementos
Finitos
Daniel López López

Modelo de red neuronal para regresión

Las redes neuronales artificiales (RNA) aproximan funciones no lineales mediante la compo-
sición de capas afines y activaciones. Para un problema de regresión con dos salidas (tensión
máxima y desplazamiento máximo), resulta natural una arquitectura multitarea con un tronco
común y, opcionalmente, cabezas específicas:

ŷ =
(
ŷ(σ), ŷ(δ)

)
= fθ(x),

donde fθ es una MLP (perceptrón multicapa o en inglés multilayer perceptron) con L capas
ocultas.

Arquitectura y activaciones

• Capas ocultas: 2–4 capas densas con 64–256 neuronas suelen equilibrar capacidad y
generalización en datos tabulares.

• Activación: ReLU o GELU por su estabilidad y capacidad para modelar no linealidades.

• Normalización: BatchNorm o LayerNorm (opcional) para estabilizar el entrenamiento.

• Multicabeza: una cabeza para tensión máxima (σ̂máx) y otra para desplazamiento má-
ximo (δ̂máx) permite pérdidas y escalas diferentes por tarea.

Pérdida, escalado de objetivos y optimización Las RNA son sensibles a escalas. Es
recomendable:

• Estandarizar entradas continuas (media cero, varianza unitaria) y codificar categorías.

• Normalizar objetivos por una escala física (p. ej., δ̃ = δ/(FY L
3
eff/EI), σ̃ = σ/(Mref/Wz)).

El modelo aprende ỹ y, al inferir, se desnormaliza. Esto reduce la heteroscedasticidad
y acelera la convergencia.

• Pérdida: MSE o Huber por cabeza; suma ponderada si las tareas tienen magnitudes
distintas. Las ponderaciones pueden fijarse para igualar las varianzas de cada objetivo.

Regularización y control del sobreajuste

• Early stopping con paciencia 20–50 épocas sobre una validación separada (o CV).

• Weight decay (L2 10−5–10−3) y dropout ligero (0.05–0.2) en capas intermedias.

• Data splitting con grupos (por geometría/tipo de sección/apoyos) para evitar fuga de
información.

Incertidumbre y calibración Además del valor puntual, pueden estimarse intervalos:

• MC Dropout: mantener activo el dropout en inferencia y muestrear múltiples pases.

• Pérdida cuantílica: dos salidas por objetivo (percentiles p5/p95) para intervalos directos.

29



Predicción Inteligente del Comportamiento Mecánico de
Vigas usando Machine Learning y Análisis por Elementos
Finitos

Daniel López López

Diagnóstico e interpretabilidad

• Curvas de aprendizaje (entrenamiento vs. validación) para vigilar sobreajuste/infrapa-
rametrización.

• Sensibilidades (gradientes, saliency ) y PDP sobre entradas clave (Leff , EI, FY , MZ ),
interpretando tendencias físicas (p. ej., wmáx ↑ con L y ↓ con EI).

Ventajas y limitaciones Presenta una gran capacidad para relaciones altamente no linea-
les y para compartir información en multitarea. Limitaciones: requieren más cuidado en pre-
procesado/escalado, son menos interpretables de base y pueden sobreajustar si no se regu-
larizan y validan correctamente.

Comparación entre HGBR y RNA

HGBR Red neuronal

Preprocesado Mínimo, robusto a escalas Requiere estandarización y nor-
malización

Capacidad no lineal Media Muy alta (aproxima funciones
suaves/compuestas)

Regularización ν, hojas, profundidad, L2, bins,
early stopping.

Early stopping, weight decay,
dropout, arquitectura

Extrapolación Limitada fuera del dominio visto También limitada; mejora con
rasgos físico-informados

Interpretabilidad Buena (importancias, PDP/ICE) Media (curvas de sensibilidad)

Robustez a ruido Alta (con Huber y hojas míni-
mas)

Media, sensible a escalas y atí-
picos si no se cuida

Entrenamiento Rápido. Más costoso, requiere ajuste
fino

En este proyecto, ambos modelos se entrenan con la misma partición/validación (preferi-
blemente cruzada por grupos) y se evalúan con métricas absolutas (RMSE, MAE) y relativas
(MAPE), además de errores normalizados por escalas físicas (∼ L3

eff/EI para desplazamien-
tos; M/Wz para tensiones). La comparación conjunta permite valorar precisión y robustez.
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2.2 Marco Tecnológico
Para llevar a cabo este proyecto se ha empleado un conjunto de herramientas tecnológicas
que cubren todas las etapas del flujo de proyecto, desde la generación y resolución de mo-
delos estructurales hasta el entrenamiento de los modelos de aprendizaje automático y el
desarrollo de la aplicación final. La correcta integración de estas herramientas ha permitido
automatizar el proceso de simulación, procesar grandes volúmenes de resultados y construir
una interfaz interactiva que facilita el uso de los modelos desarrollados.

• Altair HyperMesh: software de preprocesado FEM utilizado para modelar automática-
mente vigas con diferentes combinaciones de geometría, material, condiciones de con-
torno y cargas. La automatización de la generación de modelos se ha llevado a cabo
mediante el uso de scripts en lenguaje TCL, permitiendo crear de forma eficiente miles
de configuraciones estructurales distintas. HyperMesh también incluye Hyperview, mó-
dulo de posprocesado de la suite Altair HyperWorks, diseñado para visualizar, analizar
e interpretar los resultados obtenidos de simulaciones por elementos finitos.

• Altair OptiStruct: solver de elementos finitos encargado de resolver los modelos gene-
rados en HyperMesh. OptiStruct proporciona resultados precisos de desplazamientos,
tensiones y reacciones nodales, los cuales constituyen la base del conjunto de datos
empleado para el entrenamiento de los modelos de aprendizaje automático. En el Ane-
xo C se describe en detalle el funcionamiento de OptiStruct y su integración con Hyper-
Mesh, explicando cómo ambas herramientas interactúan en el proceso de modelado y
análisis estructural.

• PyNastran: librería de Python utilizada para la lectura y procesamiento automatizado
de archivos de resultados FEM en formato .op2. Gracias a esta herramienta se han
extraído de forma automática los valores de interés como desplazamientos, tensiones
y reacciones garantizando la trazabilidad y consistencia de los datos obtenidos.

• Python: lenguaje principal del proyecto. Se ha empleado tanto para la generación de
combinaciones estructurales y el preprocesamiento de los datos como para la imple-
mentación de los modelos predictivos y el desarrollo de la interfaz gráfica. Su eco-
sistema de librerías científicas ha permitido cubrir todo el flujo de trabajo de manera
integrada.

• Librerías de aprendizaje automático: se han utilizado bibliotecas especializadas co-
mo scikit-learn, LightGBM, TensorFlow y Keras para la implementación, entrenamiento
y validación de los modelos de regresión. Estas herramientas proporcionan algoritmos
optimizados y facilitan la experimentación con diferentes arquitecturas y estrategias de
entrenamiento.

• Streamlit: framework de desarrollo web utilizado para construir la aplicación Alabeam,
una herramienta interactiva que permite al usuario obtener predicciones estructurales
a partir de los parámetros geométricos, materiales y de carga definidos. Streamlit ofre-
ce una integración directa con Python y una interfaz sencilla para la visualización de
resultados en tiempo real.
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Capítulo 3. ESTADO DEL ARTE
El uso de técnicas de aprendizaje automático en ingeniería estructural ha crecido de forma
notable en la última década. La motivación principal es doble. Por un lado, los métodos de
elementos finitos ofrecen gran precisión pero presentan costes computacionales elevados
cuando se exploran espacios de diseño amplios y múltiples combinaciones de materiales,
secciones y condiciones de contorno. Por otro lado, los modelos de aprendizaje automático
pueden aproximar respuestas estructurales de interés con tiempos de cálculo muy reducidos,
lo que habilita predimensionados interactivos, análisis masivos y aplicaciones de asisten-
cia al diseño. La literatura reciente recoge tanto estudios de revisión como demostraciones
aplicadas sobre vigas y marcos, así como avances en modelos informados por la física. A
continuación se sintetizan las líneas más relevantes para este trabajo.

3.1 Modelos surrogate para acelerar o sustituir el FEM
Los modelos surrogate se entrenan con datos obtenidos de simulaciones de alta fidelidad pa-
ra predecir con rapidez magnitudes estructurales. Diversas revisiones y contribuciones mues-
tran que esta estrategia permite mantener errores controlados mientras reduce el tiempo de
cómputo de forma sustancial. En el ámbito estructural, se emplean métodos de reducción de
orden y aproximaciones de respuesta, así como modelos puramente basados en datos que
actúan como sustitutos del FEM en tareas de evaluación y toma de decisiones en tiempo casi
real [11]-[13].

3.2 Aprendizaje profundo para campos de tensiones y desplaza-
mientos

Cuando el objetivo es predecir campos completos de respuesta, las redes neuronales profun-
das han mostrado gran capacidad para aproximar distribuciones de tensiones o campos de
desplazamiento a partir de información geométrica y de carga. Resultados representativos
demuestran errores bajos frente al FEM y un potencial para integrarse en cadenas de cálculo
aceleradas, especialmente en tareas de evaluación rápida y diseño asistido [11], [14].

3.3 Ensembles de árboles en problemas tabulares estructurales
En problemas con entradas tabulares que recogen propiedades de sección, material y car-
gas, los ensambles de árboles de gradiente, y en particular la variante de histograma, ofrecen
precisión, robustez y un preprocesado moderado. Además cuentan con soporte nativo para
valores ausentes, parada temprana y restricciones de monotonía, lo que facilita flujos de tra-
bajo reproducibles y eficientes en ingeniería [15], [16]. Esta familia es un buen contrapunto a
las redes neuronales cuando la estructura del dato es tabular y el diseño de características
está informado por la física.
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3.4 Redes informadas por la física para vigas
Las redes neuronales informadas por la física incorporan ecuaciones de equilibrio y rela-
ciones constitutivas en la función de pérdida. En vigas de Euler–Bernoulli se han publicado
marcos que resuelven problemas directos e inversos y que mejoran la eficiencia de datos,
con aplicaciones a respuestas dinámicas bajo cargas móviles o a escenarios con medidas
escasas. Estos trabajos señalan una vía de integración entre conocimiento físico y aprendi-
zaje automático para problemas de viga y pórtico [11], [17].

3.5 Aplicaciones específicas en vigas como surrogate del FEM
Existen contribuciones que sustituyen explícitamente el FEM de vigas por modelos de apren-
dizaje para predecir respuestas máximas y transitorias. En particular, se han presentado
comparativas entre árboles potenciados y redes neuronales, validando los resultados fren-
te a soluciones FEM. Estas evidencias son directamente relevantes para este TFM, centrado
en vigas en el plano XY con cargas en X y Y y momentos en Z, diferentes secciones y
varios materiales [18].

3.6 Síntesis y contribución del trabajo
Las dos corrientes más útiles para el problema abordado son las siguientes. Primero, los en-
sambles basados en gradiente con histograma resultan muy eficaces en datos tabulares con
rasgos físico informados. Segundo, las redes neuronales ofrecen mayor flexibilidad para cap-
turar no linealidades complejas y constituyen la base de enfoques informados por la física.
La contribución de este trabajo consiste en construir un conjunto de datos FEM específico de
vigas 2D, entrenar y comparar un HistGradientBoostingRegressor y una red neuronal sobre el
mismo espacio de entrada, y entregar una aplicación interactiva que permita elegir el modelo
en función del compromiso entre rapidez, precisión y robustez [11], [15].

3.7 Modelos industriales: Altair PhysicsAI como surrogate CAE de
propósito general

Dentro de las soluciones comerciales destaca Altair PhysicsAI, integrado en la plataforma
HyperWorks, cuyo objetivo es entrenar modelos predictivos a partir de datos de simulación y
ensayo para realizar predicciones de física en nuevos diseños con gran rapidez. La propuesta
se alinea con la tendencia de sustituir o acelerar solvers tradicionales mediante modelos de
aprendizaje automático entrenados con datos CAE históricos y reutilizables entre proyectos
y geometrías similares [19], [20].

PhysicsAI se presenta como una tecnología de geometric deep learning que aprende la re-
lación entre forma y desempeño para cualquier física. Según la documentación corporativa,
una vez entrenados, los modelos pueden ofrecer predicciones hasta mil veces más rápidas
que un análisis FEM convencional, lo que habilita estudios de alternativas y validaciones pre-
liminares en tiempos muy reducidos [21], [22].
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La herramienta está expuesta en el entorno de HyperMesh y permite crear conjuntos de da-
tos, entrenar y validar modelos, y generar predicciones directamente sobre modelos CAD o
mallas importadas, sin necesidad de parametrizar variables de diseño y admitiendo remalla-
dos [23]. La Figura 3.1 muestra la estructura de trabajo de PhysicsAI.

Figura 3.1. Flujo de trabajo de PhysicsAI

En las versiones recientes se han incorporado arquitecturas específicas para el entrenamien-
to, entre ellas el Graph Context Neural Simulator y el Transformer Neural Simulator. La in-
troducción de estas variantes busca suavizar contornos de predicción, reducir la sensibilidad
al tamaño de malla y mejorar los tiempos en GPU, lo que refuerza su aplicabilidad en esce-
narios con mallas heterogéneas y requisitos de respuesta interactiva [24]. Diversas guías y
casos de uso muestran su despliegue como solver de IA dentro de flujos de trabajo de Hy-
perWorks con el lema de un único modelo y un único solver, y con integración en procesos
de optimización de diseño acelerados [20], [25], [26].

Relación con el presente trabajo El enfoque de Altair PhysicsAI refuerza la tendencia in-
dustrial hacia modelos predictivos que actúan como sustitutos acelerados del FEM. En este
trabajo se adopta la misma filosofía al entrenar y comparar un HistGradientBoostingRegressor
y una red neuronal sobre un conjunto de datos FEM de vigas 2D, con el objetivo de obtener
predicciones rápidas de desplazamiento y tensión máximos. Aunque la solución propuesta
es académica y centrada en un dominio específico, se alinea conceptualmente con la estra-
tegia de surrogate modelling presente en herramientas industriales como PhysicsAI, y pone
de manifiesto las ventajas prácticas de integrar modelos de ML en flujos de diseño estructural.
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3.8 Protocolos de validación y comparabilidad
La literatura reciente insiste en la necesidad de protocolos de validación que eviten estima-
ciones optimistas del rendimiento cuando los datos presentan correlaciones estructurales. En
problemas de vigas es común que múltiples instancias compartan geometría o tipo de apoyo.
Para garantizar comparabilidad se recomienda: validación cruzada con agrupación por fami-
lia geométrica o por sección, separación explícita entre evaluación dentro del dominio y fuera
del dominio, por ejemplo dejando fuera un tipo de sección completo para medir extrapolación,
uso combinado de métricas absolutas y relativas, y normalización de errores por escalas físi-
cas coherentes con la teoría de vigas. Estas pautas permiten interpretar las diferencias entre
modelos y trasladar resultados a escenarios de diseño reales.

3.9 Generalización y extrapolación en modelos supervisados
Los modelos basados en árboles y las redes neuronales muestran comportamientos dife-
rentes cuando se evalúan fuera del rango visto en entrenamiento. Los primeros tienden a
ser conservadores en regiones no muestreadas, mientras que las redes neuronales pueden
extrapolar suavemente si el diseño de características está bien alineado con la física del
problema. En ambos casos la incorporación de variables físico informadas, así como res-
tricciones simples como monotonías esperadas, mejora la estabilidad de la extrapolación y
atenúa errores sistemáticos en bordes del dominio.

3.10 Generación de datos y cobertura del espacio de diseño
Como los datos se obtienen por simulación, es importante cubrir bien el espacio de diseño
para que el modelo aprenda casos variados y no solo unos pocos. Para ello se combinan tres
ideas sencillas:

• Repartir las muestras por tipos de sección y por rangos de carga,

• Usar un muestreo que llene uniformemente las combinaciones continuas (p. ej., latin
hypercube)

• Añadir más casos justo donde el error del modelo es mayor (active learning).

Además, se documentan claramente los límites de validez del conjunto de datos y las zonas
con pocas muestras, para evitar extrapolaciones no deseadas y poder interpretar los resulta-
dos con cautela.
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3.11 Conclusión del Estado del Arte
En conclusión, cuando se dispone de datos de simulación, los modelos supervisados son
una vía eficaz para acelerar el análisis estructural con pérdidas mínimas de precisión. La
combinación de rasgos informados por la física con métodos robustos en datos tabulares y
con redes neuronales permite obtener predicciones fiables a muy bajo coste computacional.

La literatura coincide en cuatro buenas prácticas: validar con agrupación para evitar fugas de
información, distinguir con claridad los casos fuera del dominio de entrenamiento, cuantificar
la incertidumbre de las predicciones y asegurar una cobertura adecuada del espacio de dise-
ño. Con estas ideas como guía, el siguiente capítulo presenta la metodología de este trabajo:
generación del conjunto de datos mediante FEM, diseño de características, y entrenamiento
y validación comparativa de un HistGradientBoostingRegressor y de una red neuronal, junto
con los criterios de evaluación usados para valorar su desempeño en condiciones de uso
realistas.
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Capítulo 4. METODOLOGÍA
La metodología seguida en este trabajo se estructura en una secuencia de etapas que abar-
can desde la definición paramétrica de vigas y la generación automática de modelos hasta
el entrenamiento y la validación de modelos de aprendizaje automático, concluyendo con su
integración en una aplicación interactiva. El flujo completo comprende:

1. Diseño paramétrico de la viga y muestreo de combinaciones.

2. Generación automática de modelos en HyperMesh.

3. Resolución FEM con OptiStruct.

4. Extracción de respuestas desde ficheros .op2 mediante PyNastran.

5. Construcción y depuración del conjunto de datos.

6. Preprocesado y diseño de características.

7. Entrenamiento y validación comparativa de un HistGradientBoostingRegressor y de una
red neuronal.

8. Selección de modelos y despliegue en la aplicación Alabeam.

4.1 Generación masiva de modelos estructurales
Dado que no se disponía de datos experimentales o históricos reales, esta fase tuvo como
objetivo la generación de datos sintéticos que representaran el comportamiento estructural de
vigas bajo distintos escenarios de carga y geometría. Para ello se modelaron de forma teórica
miles de vigas mediante simulaciones por elementos finitos, garantizando que los resultados
(tensiones y desplazamientos) fueran físicamente consistentes y realistas, incluyendo tanto
configuraciones con niveles de esfuerzo admisibles como otras próximas al fallo. Este enfoque
permitió disponer de un conjunto de datos suficientemente amplio, diverso y fiable para el
entrenamiento de los modelos de aprendizaje automático.

4.1.1. Definición del espacio de diseño

Se definió un espacio de diseño que combina la geometría de la sección, el material, la longi-
tud, las condiciones de contorno y el esquema de cargas. Los parámetros se muestrearon de
forma aleatoria controlada mediante un script en Python, generando un archivo .csv maestro
con miles de combinaciones. La estrategia de muestreo se orientó a cubrir rangos realistas y
equilibrar la frecuencia de los distintos tipos de sección y apoyo.

4.1.2. Construcción automática en HyperMesh

La creación de los modelos FEM se automatizó en HyperMesh mediante un script en TCL
que lee el .csv maestro y construye para cada fila una viga 1D en el plano XY XY. A cada
modelo se le asignan las propiedades de material y sección, las condiciones de contorno y
las cargas correspondientes. Finalmente, cada caso se exporta en formato .fem listo para su
resolución con Optistruct.
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4.1.3. Ejecución FEM con OptiStruct

Los ficheros .fem se resolvieron con OptiStruct para obtener las respuestas estructurales. La
salida binaria .op2 incluye los desplazamientos, tensiones y reacciones nodales. El proceso
se ejecutó por lotes con control de errores, permitiendo detectar y reintentar automáticamente
los casos fallidos.

4.2 Extracción de resultados y construcción del dataset
A continuación se detalla el proceso de extracción de resultados para posteriormente generar
el conjunto de datos para el entrenamiento.

4.2.1. Lectura de resultados con PyNastran

La lectura y el procesado de los .op2 se realizó con PyNastran. Para cada modelo se ex-
trajeron el desplazamiento máximo y la tensión equivalente de Von Mises máxima, junto con
identificadores que permiten trazar cada muestra hasta su definición paramétrica original.

4.2.2. Ensamblado del conjunto de datos

Se construyó un dataset tabular que integra, para cada modelo, las entradas de diseño y las
salidas objetivo. Se llevaron a cabo verificaciones de consistencia, eliminación de duplicados
y controles de rango.

4.3 Preprocesado y diseño de características
Una vez obtenido el conjunto de datos, se realizan las siguientes tareas de preprocesado.

4.3.1. Limpieza y transformaciones iniciales

Antes del entrenamiento se normalizaron identificadores, se codificaron categorías y se ho-
mogenizaron unidades. Se verificó la ausencia de valores ausentes en las variables esencia-
les y se aplicaron conversiones simples cuando fue necesario.

4.3.2. Características físico informadas

Se incorporaron al dataset magnitudes derivadas que capturan aspectos clave del compor-
tamiento de vigas. Entre ellas se incluyen propiedades de sección y rigidez, métricas de
esbeltez, longitudes efectivas asociadas a las condiciones de contorno y escalas físicas de
respuesta para desplazamiento y tensión. Estas características ayudan a estabilizar la rela-
ción entrada salida y a mejorar la capacidad predictiva de los modelos.
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4.4 Entrenamiento de modelos
Finalizado el preprocesamiento del conjunto de datos se procede al entrenamiento de los
modelos como se detalla a continuación.

4.4.1. Modelos considerados

Se entrenaron y compararon dos enfoques supervisados: un HistGradientBoostingRegressor
y una red neuronal densa de regresión. En este capítulo se presentan únicamente el papel
de cada modelo dentro del flujo y el protocolo de validación. Las configuraciones concretas y
sus justificaciones se detallan en el Capítulo 5.

4.4.2. Esquema de validación y particiones

Con el objetivo de obtener una estimación robusta del rendimiento se empleó validación cru-
zada con agrupación por familia geométrica y tipo de apoyo. Este esquema evita fuga de
información cuando existen muestras muy similares y permite evaluar el comportamiento del
modelo frente a configuraciones no vistas durante el entrenamiento. En paralelo se reservó
un conjunto de prueba estratificado para la evaluación final.

4.4.3. Métricas de evaluación

Se utilizaron métricas absolutas como MAE y RMSE, el coeficiente de determinación R2 y
errores relativos normalizados por escalas físicas de referencia. Este conjunto de métricas
facilita interpretar la precisión en términos de la teoría de vigas y compara de forma homogé-
nea ambos modelos.

4.5 Iteración y mejora del proceso
Crear un modelo de aprendizaje automático implica un proceso repetitivo de ajustes y me-
joras, tanto en los parámetros de entrenamiento como en el tratamiento de los datos, para
lograr un mejor desempeño. A continuación se explica el proceso que se ha seguido el trabajo.

4.5.1. Ciclo de refinamiento

El desarrollo siguió un ciclo iterativo. En una primera etapa se entrenaron modelos con un
preprocesado mínimo y el rendimiento fue insuficiente. A partir de ese diagnóstico se en-
riquecieron las características físico informadas y se ajustaron los parámetros de entrena-
miento. Tras varias iteraciones se alcanzó un equilibrio estable entre precisión y complejidad,
momento en el que se fijaron los modelos definitivos.
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4.5.2. Selección final

La selección se basó en el desempeño medio y en la estabilidad entre pliegues de validación.
También se consideraron la rapidez de inferencia y la interpretabilidad práctica en el contexto
de la aplicación final. El resultado es un par de modelos listos para uso: uno basado en árbo-
les y otro neuronal, ambos con rendimiento contrastado y con configuraciones reproducibles.

4.6 Integración en la aplicación Alabeam
Una vez validados los modelos se integraron en una aplicación interactiva desarrollada en
Streamlit. La interfaz permite definir rápidamente las propiedades geométricas, materiales,
apoyos y cargas, y devuelve la predicción de desplazamiento máximo y tensión de Von Mises
máxima. El usuario puede seleccionar qué modelo emplear en cada consulta, de modo que
se cubren necesidades de exploración rápida y análisis más detallado.

4.7 Reproducibilidad y control de calidad
Cada muestra del dataset mantiene un vínculo directo con su definición paramétrica, el fichero
.fem correspondiente y el resultado .op2 del que se extrajo la información. Este encadena-
miento permite auditar cualquier predicción y rehacer el flujo completo si es necesario.

Se fijaron semillas aleatorias en el muestreo y en el entrenamiento. Se registraron versio-
nes de librerías y de scripts, y se documentó el entorno de ejecución. Este control facilita la
comparación entre iteraciones y la replicación de resultados.

Antes del entrenamiento se aplicaron comprobaciones automáticas de rangos y coherencia
dimensional. Durante la validación se monitorizaron curvas de aprendizaje y mapas de erro-
res por familia de secciones y apoyos. Tras el despliegue se realizaron pruebas funcionales en
la interfaz para verificar la consistencia de las predicciones en distintos escenarios de entrada.

4.8 Resumen de la metodología
La metodología propuesta automatiza la generación de miles de modelos de vigas, obtiene
respuestas FEM de referencia y construye un conjunto de datos coherente para el entrena-
miento de dos enfoques complementarios. La inclusión de características físico informadas
y un protocolo de validación con agrupación permitió mejorar de forma significativa el ren-
dimiento frente a los primeros intentos con preprocesado mínimo. Finalmente se integraron
ambos modelos en una herramienta interactiva que habilita predicciones ágiles y replicables
en el ámbito del análisis estructural.

La Figura 4.1 sintetiza el flujo de trabajo establecido por la metodología comentada anterior-
mente.
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Figura 4.1. Metodología del proyecto

4.9 Recursos y entorno computacional
Se empleó un ordenador portátil con Intel Core i9, 32 GB de RAM y SSD de 1 TB. El flujo de
trabajo se apoyó en Altair HyperMesh (licencia de estudiante), Altair OptiStruct, y un entorno
Python con librerías de código abierto (scikit-learn, TensorFlow, PyNastran, Streamlit).

El cómputo total aproximado fue de 24 h, distribuidas en: generación de modelos FEM, resolu-
ción en OptiStruct, postprocesado con PyNastran y entrenamiento/validación de los modelos.

4.10 Costes estimados
El coste y presupuesto estimado del proyecto se detalla en el Apéndice A.
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Capítulo 5. DESARROLLO DEL PROYECTO
En este capítulo se detalla todo el proceso que se ha llevado a cabo para el entrenamiento de
los modelos de aprendizaje automático y el posterior desarrollo de la herramienta Alabeam.
Todos los análisis descritos en este capítulo se ejecutaron con el entorno indicado en la
Sección 5.2 y se mantuvo el sistema de referencia de la Sección 2.1.1. El código desarrollado
para la generación de modelos y el entrenamiento de los modelos predictivos comentado en
esta sección se encuentra disponible en un repositorio público en Github, ver referencia [27].

5.1 Arquitectura general del sistema
El flujo de trabajo seguido en este proyecto se ha diseñado de forma modular, de manera que
cada componente tecnológico de la Sección 2.2 cumple una función específica dentro del
proceso completo, garantizando la trazabilidad y la automatización del conjunto. La Figura 5.1
ilustra de forma esquemática la estructura general del sistema y la interacción entre sus
principales bloques.

Altair HyperMesh
Modelado y parametrización

Altair OptiStruct
Resolución FEM

PyNastran
Extracción de resultados

Python
Preprocesado y feature engineering

Modelos ML
HGBR & Red neuronal

Alabeam (Streamlit)
Interfaz interactiva

.op2

Generación de modelos Simulación estructural Procesamiento de datos

Preprocesado y variables físicasEntrenamiento y validaciónPredicción y visualización

Figura 5.1. Arquitectura general del sistema desarrollado para la aplicación Alabeam

En primer lugar, la generación de los modelos estructurales se realiza en Altair HyperMesh,
donde mediante scripts en lenguaje TCL se automatiza la creación de vigas con diferentes
combinaciones de geometría, material, apoyos y cargas. Estos modelos se exportan poste-
riormente al solver Altair OptiStruct, que se encarga de resolverlos utilizando el Método de
los Elementos Finitos (MEF).

Los resultados obtenidos principalmente desplazamientos, tensiones y reacciones nodales
se almacenan en archivos binarios (.op2), los cuales son procesados automáticamente me-
diante la librería PyNastran. Este paso permite extraer las magnitudes relevantes de cada
simulación y convertirlas en un formato estructurado adecuado para su análisis posterior en
Python.

Una vez recopilados los resultados, se lleva a cabo el preprocesamiento y la generación de
nuevas variables derivadas mediante scripts en Python.
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En esta etapa se calculan propiedades geométricas (área, momentos de inercia, módulo re-
sistente, etc.), parámetros de rigidez (EI) y factores adimensionales asociados a la esbeltez
o la longitud efectiva. Este proceso constituye la base del feature engineering, que permite
optimizar la capacidad predictiva de los modelos de aprendizaje automático.

Posteriormente, los datos preprocesados se utilizan para el entrenamiento y validación de los
modelos desarrollados en scikit-learn, TensorFlow y Keras, concretamente un HistGradient-
BoostingRegressor y una red neuronal. Los modelos entrenados se integran finalmente en
la aplicación Streamlit denominada Alabeam, que ofrece una interfaz interactiva en la que
el usuario puede introducir las características de una viga y obtener instantáneamente las
predicciones de tensión y desplazamiento máximos.

En resumen, la arquitectura propuesta conecta de forma secuencial las etapas de modelado,
resolución, extracción de datos, aprendizaje y visualización, permitiendo un flujo de trabajo
completamente automatizado y reproducible. La metodología de implementación y los deta-
lles técnicos seguirá el flujo explicado en la Sección 4.

5.2 Entorno y versionado
A efectos de reproducibilidad, la Tabla 5.1 recoge las versiones del software y librerías em-
pleadas.

Tabla 5.1. Versiones de software y librerías empleadas

Software/herramienta Versión y entorno

Altair HyperMesh 2025.1 (Windows 11)
Altair OptiStruct 2025.1
PyNastran 1.4.1 (Python 3.12.3, WSL Ubuntu 22.04)
scikit-learn 1.7.1
TensorFlow/Keras 2.20
Streamlit 1.49.1
Compilador LaTeX TeX Live 2025 (pdfLaTeX)

5.3 Alcance y tipo de análisis
El trabajo se centra en vigas 2D en el plano XY . Esta elección responde a tres motivos
principales:

• Permite acotar el problema a un dominio físico bien conocido y con formulación sólida.

• Facilita generar un volumen grande de simulaciones FEM con trazabilidad y control de
parámetros.

• Ofrece un banco de pruebas idóneo para demostrar que modelos de aprendizaje auto-
mático pueden aproximar con buena precisión las respuestas de un solver de elemen-
tos finitos.
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Las vigas se emplean de forma generalizada en numerosos sectores industriales y constitu-
yen elementos fundamentales en prácticamente cualquier tipo de construcción, permitiendo
representar y analizar una amplia variedad de escenarios estructurales. La Figura 5.2 mues-
tra una estructura reticular formada por vigas.

Figura 5.2. Ejemplo de vigas en construcción [28]

Las vigas permiten aislar de forma clara la flexión en el plano y el esfuerzo axial, generar un
gran número de simulaciones MEF y, sobre todo, disponer de magnitudes físico informadas
(como EI, Wz, Lef o escalas del tipo L3

ef/EI) que se incorporan de manera directa al feature
engineering (ver Sección 2.1.2).

En este marco, se adopta un sistema de coordenadas en el que el eje X coincide con el eje
longitudinal de la viga, el eje Y es transversal dentro del plano y el eje Z emerge del plano.
Las cargas consideradas son fuerzas puntuales en X e Y y momentos alrededor de Z (ver
Sección 2.1.1); las condiciones de contorno incluyen configuraciones típicas como biapoya-
da, empotrada, empotrada–articulada y voladizo, modelando la longitud efectiva mediante un
factor K acorde a cada caso. Se supone un comportamiento lineal elástico e isótropo, en
régimen estático y de pequeñas deformaciones, y se discretiza con elementos 1D de viga
con grados de libertad (u, v, θz) por nodo, lo que permite mallas muy eficientes manteniendo
la fidelidad en las respuestas de interés.

El propósito es demostrar que modelos de aprendizaje automático pueden aproximar con
buena precisión salidas de referencia obtenidas con un solver de elementos finitos en un
dominio físico acotado y bien interpretado. Concretamente, a partir de combinaciones de
entradas geométricas, de material, de contorno y de carga, se buscan predicciones del des-
plazamiento máximo wmáx en la dirección Y y de la tensión de Von Mises máxima σmáx.
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El objetivo no es sustituir el análisis MEF general, sino evidenciar su aceleración cuando el
problema está bien parametrizado y el modelo se entrena dentro de un espacio de diseño
adecuadamente muestreado. Quedan fuera de alcance fenómenos como la dinámica tran-
sitoria, la no linealidad geométrica o material, el pandeo no lineal global, el contacto y los
modelos 3D de sólido, que se consideran líneas futuras razonables una vez consolidada la
metodología en vigas 2D.

5.4 Generación de modelos de vigas
El conjunto de casos MEF se genera restringiendo el problema al plano XY y limitando las
condiciones de contorno a los extremos de la viga. Esta decisión reduce de forma drástica
el número de combinaciones necesarias manteniendo la riqueza física suficiente para entre-
nar y validar modelos predictivos. Todas las longitudes, cargas y propiedades se expresan
siguiendo un sistema de unidades coherente definido en la Sección 2.1.1.

Dominio geométrico La longitud libre L de la viga se define en el intervalo [150, 5000] mm,
albergando así los casos más comunes de longitud de vigas. Se consideran cinco familias de
secciones transversales: circular maciza, circular hueca (tubo), rectangular maciza, rectan-
gular hueca y perfil en I. Cada sección se define por sus dimensiones mínimas necesarias
(radio/diámetros en circulares; ancho, canto y espesores en rectangulares e I), garantizando
geometrías físicamente realizables (espesores positivos y relaciones internas< externas).

Y

Z

Dim1
Y

Z

Dim1

Dim
2

Y

Z

Dim1

D
im

2

Circular (Rod) Circular hueca (Tube) Rectangular (Bar)

Dim1

D
im

2

Y

Z

D
im

3

Dim4

Dim2

D
im

1

Y

Z

D
im

5

Dim4

Dim3

D
im

6

Rectangular hueca (Box) Perfil en I

Figura 5.3. Familias de secciones transversales consideradas
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En la Fig. 5.3 se ilustran las cinco familias de secciones utilizadas junto con sus dimensiones
geométricas básicas. Para mantener la coherencia con el entorno de modelado y los scripts
de generación, dichas dimensiones se han nombrado siguiendo la convención de HyperMesh
como Dim1–Dim6. La Tabla 5.2 recoge la correspondencia entre cada Dim y la magnitud
geométrica específica en cada tipo de sección, de modo que la misma notación se utiliza de
forma consistente en la generación de modelos, el preprocesado y el postprocesado.

Tabla 5.2. Equivalencias Dim1–Dim6 (formato HyperMesh).

Sección D1 D2 D3 D4 D5 D6

Circular Radio — — — — —
Circular hueca Radio ext. Radio int. — — — —
Rectangular Ancho Alto — — — —
Rectangular hueca Ancho Alto Esp. vertical Esp. horizontal — —
I Alto Ancho ala inf. Ancho ala sup. Esp. alma Esp. ala inf. Esp. ala sup.

Materiales Se emplean materiales metálicos habituales en estructuras: acero al carbono,
acero inoxidable, aluminio y titanio, modelados como lineales elásticos e isótropos. La Ta-
bla 5.3 resume las propiedades utilizadas en el muestreo (módulo de elasticidad E, coefi-
ciente de Poisson ν, densidad ρ en kg mm−3 y límite elástico σy en MPa).

Tabla 5.3. Propiedades mecánicas de materiales empleados

Material E [MPa] ν [-] ρ [kg/mm3] σy [MPa]

Acero 210 000 0.30 7.8× 10−6 370
Acero inoxidable 210 000 0.30 7.9× 10−6 170
Aluminio 70 000 0.32 2.7× 10−6 270
Titanio 120 000 0.32 4.5× 10−6 830

Condiciones de contorno Se consideraron dos tipos de restricción: empotramiento, que
bloquea todos los grados de libertad del nodo (u, v, θz), y apoyo simple (articulación), que
impide el desplazamiento en el punto de apoyo pero permite el giro. Para simplificar y evi-
tar mecanismos, las restricciones sólo se aplican en los extremos de la viga y se descar-
tan combinaciones del tipo “simple–libre”. Con ello, las configuraciones válidas son: voladizo
(empotramiento–libre), biapoyada (simple–simple) y mixta (empotramiento–simple o simple–
empotramiento), tratadas como equivalentes a biapoyada a efectos de longitud efectiva. Estas
configuraciones se utilizan también para fijar el factor K de longitud efectiva cuando procede
(véase Tabla 2.2).

Cargas y casos de carga Cada modelo admite hasta tres acciones puntuales en total, com-
binando: fuerzas en X (axiales: tracción/compresión), fuerzas en Y (transversales: flexión en
el plano) y momentos alrededor de Z (pares flectores en el plano). Las fuerzas puntuales y
momentos se aplican en posiciones internas x ∈ (0, L). Se adopta un convenio de signos
coherente con el sistema de ejes descrito en la Sección 2.1.1.
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Para garantizar casos físicamente coherentes y útiles para el entrenamiento, la generación
aplica controles en tres niveles.

• Validez geométrica: se imponen espesores positivos en secciones huecas (con Di <

Do), altura de alma positiva en perfiles en I (hw > 0) y no inversión ala/alma; además,
se filtran combinaciones con momentos de inercia o módulos resistentes no válidos
(I ≤ 0, S ≤ 0) y se acotan esbelteces extremas.

• Condiciones de contorno: sólo se permiten restricciones en los extremos y se descar-
tan configuraciones con mecanismos (p. ej., simple–libre), asegurando que no queden
grados de libertad sin restringir.

• Síntesis de cargas: para cada viga se genera una carga dominante que sitúa la tensión
máxima objetivo en el entorno del límite elástico, muestreando k con sesgo hacia el
rango subcrítico [0.8, 1.0] y una fracción en [1.0, 1.2], de modo que σtarget = k σy y
Mtarget = σtarget S. Con esto se logra asegurar que hay casos con tensiones cercanas
al límite elástico e incluso algunos que lo superan.

A partir de Mtarget, se calcula una fuerza puntual o un momento equivalente (según el tipo de
apoyo y la posición), y se evalúa una estimación conservadora de la flecha δ. La magnitud de
la carga se ajusta iterativamente hasta cumplir una ventana de servicio δ ∈ [0.01L, 0.10L]

(reducciones ×0.85 o incrementos ×1.15 con intentos acotados), si no es factible, el caso
se descarta. Para evitar casos demasiado “limpios” o triviales, se añaden hasta dos cargas
secundarias de pequeña entidad (2–12 % de la dominante) con posiciones internas mues-
treadas en [0.1L, 0.9L] y ligeras perturbaciones en cuartos/tercios, limitando el total a tres
cargas. Se evita aplicar cargas a menos de 10 mm de los extremos. Los modelos no con-
vergentes o con respuestas anómalas se marcan para reintento y, en su caso, se descartan
antes del preprocesado. La trazabilidad se garantiza mediante nombres de caso y un CSV
maestro que codifica entradas, restricciones y cargas generadas.

5.4.1. Modelado en HyperMesh/OptiStruct

Las vigas se han modelado en HyperMesh empleando elementos 1D CBEAM con propiedad
PBEAML, que permite definir la geometría de la sección (circular, tubo, rectangular, cajón
o perfil en I) de forma paramétrica y coherente con la convención Dim1–Dim6 descrita pre-
viamente. Cada CBEAM dispone de seis GDL clásicos por nodo (ux, uy, uz, θx, θy, θz); en el
planteamiento 2D el eje del elemento coincide con X y la flexión se produce en el plano XY

(momento alrededor de Z). La orientación local del elemento se fija mediante el vector de
offset de dirección (tercer y cuarto campo del CBEAM), asegurando que el eje fuerte quede
alineado con Y .

Las condiciones de contorno se imponen con tarjetas SPC (Single Point Constraint). El apoyo
simple se representa restringiendo las tres traslaciones (123) y dejando libres las rotaciones,
mientras que el empotramiento fija los seis GDL (123456). Las cargas se aplican con FOR-
CE (componentes en X o Y ) y MOMENT (alrededor de Z), ubicadas en nodos interiores o
extremos según el caso.
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En case control se activan los resultados necesarios en formato OP2: DISPLACEMENT, SPC-
FORCE y STRESS, que posteriormente se extraen con PyNastran para obtener el desplaza-
miento máximo (wmáx) y la tensión máxima (σVM,máx).

El OP2 es un fichero binario de resultados (formato Nastran/OptiStruct) que almacena, por
cada caso de carga (subcase) y paso de carga/tiempo, tablas de magnitudes postproceso en
registros no formateados (Fortran). Es compacto y rápido de leer, pero no es legible a simple
vista: requiere un lector específico (p. ej., PyNastran). Entre las tablas habituales están los
desplazamientos nodales (OUG*), tensiones/esfuerzos en elementos (OES*), fuerzas de ele-
mentos (OEF*) y fuerzas de reacción (OQG*/SPCFORCE). Cada registro referencia IDs de
nodos/elementos y puede venir en sistemas de coordenadas globales o locales, por lo que
es importante mantener la consistencia de ejes. En el case control se solicitaron DISPLA-
CEMENT, STRESS y SPCFORCE en OP2; posteriormente, PyNastran extrae de las tablas
correspondientes wmáx y σVM,máx, junto con verificaciones de integridad (subcases, unidades
y mapeo de IDs).

La malla de elementos se genera dividiendo la longitud L en elementos uniformes (típica-
mente del orden de decenas de milímetros) para capturar con estabilidad la respuesta de
flexión sin coste excesivo. Las propiedades de sección se asignan con PBEAML seleccionan-
do el tipo según la denominación en HyperMesh (ROD, TUBE, BAR, BOX, I) y los parámetros
geométricos correspondientes, el material se define con MAT1 (módulo E, ν y densidad),
siguiendo el sistema de unidades {mm,N,MPa}.

Ejemplo práctico A modo de ejemplo, se toma una viga tubular de L = 1000 mm en ti-
tanio con apoyo simple en ambos extremos mallada con 100 elementos CBEAM uniformes
entre los nodos extremos (representada en la Figura 5.4). La sección se definió con PBEAML,
TUBE indicando diámetro exterior e interior; las restricciones se aplicaron con SPC tipo 123

en los extremos (permitiendo giro), y se prescribió una acción mediante MOMENT alrededor
de Z en un nodo interior. En case control se activaron DISPLACEMENT(OUTPUT2), SPC-
FORCE(OUTPUT2) y STRESS(OP2,ALL) para volcar desplazamientos y tensiones al fichero
binario .op2. Este patrón es representativo del resto de casos generados de forma automáti-
ca.

Figura 5.4. Viga de titanio modelada en HyperMesh
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5.4.2. Generación automática del fichero CSV de casos

La automatización comienza con un script en Python que construye un fichero CSV maes-
tro con todos los casos a simular. Este fichero será leído por el script TCL de HyperMesh
para generar los modelos .MEF de manera desatendida. El CSV define, por fila, la longitud
de la viga, el tipo de sección y sus dimensiones según la convención Dim1–Dim6, el mate-
rial con sus propiedades básicas, la configuración de apoyos en los extremos y hasta tres
acciones puntuales o pares en posiciones internas. Se añade un esquema de nombres de
caso que permite trazar cada modelo desde la generación hasta el postproceso, por ejemplo,
Beam_TUBE_4900mm_simple_simple_Titanium (sección tubular, L = 4900 mm, biapoyada
y material titanio).

Como se mencionó previamente, para cada combinación válida, el script sintetiza un caso
de carga dominante con el objetivo de situar la tensión máxima cerca del límite elástico sin
exceder ventanas de servicio en flecha. Para ello se selecciona un factor k sesgado hacia
el intervalo subcrítico 0.8–1.0 y con una fracción en 1.0–1.2, se fija un objetivo de tensión
σtarget = k σy y se convierte en un objetivo de momento Mtarget = σtarget S mediante el módu-
lo resistente S de la sección. En función de la configuración de apoyos y de la posición interna
elegida, Mtarget se traduce a una fuerza o a un momento aplicado. Con una estimación con-
servadora de flecha, el script ajusta iterativamente la magnitud para que el desplazamiento
máximo quede dentro de un intervalo relativo respecto a la longitud, típicamente entre 0.01L

y 0.10L. Si no es posible cumplir simultáneamente los criterios de tensión y flecha, el caso
se descarta.

El procedimiento registra en fromato CSV (Comma Separated Values), además del nombre
del modelo y los parámetros geométricos y de material, el tipo y dirección de cada carga, su
magnitud en N o N·mm y su posición en mm. El ejemplo mostrado en la Tabla 5.4 ilustra una
fila de salida con una viga circular maciza de 150 mm en acero, en voladizo, con un momento
alrededor de Z aplicado en una posición interna:
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Tabla 5.4. Ejemplo de una fila del CSV mostrado en formato vertical para facilitar su lectura

Campo Valor

model_name Beam_ROD_150mm_clamped_None_Steel
L [mm] 150
section_type ROD
dim1, dim2, dim3 40.89, 0, 0
dim4, dim5, dim6 0, 0, 0
material Steel
E [MPa] 210000
nu [-] 0.3
density [N/mm3] 7.8e-06
yield_strength [MPa] 370
support_L, support_R clamped, None
num_cargas 1
c1_type moment
c1_dir Z
c1_mag [N·mm] -5429301.16
c1_pos [mm] 75.0
c2_* —
c3_* —

El código completo del generador de CSV se incluye en los apéndices y se referencia en el
texto principal para facilitar la reproducción. Se recomienda fijar una semilla aleatoria cuando
se requiera repetibilidad exacta del conjunto de casos.

5.4.3. Automatización en HyperMesh con TCL

El proceso de creación masiva de modelos se ejecuta con un script TCL que lee el CSV
maestro y construye, para cada fila, un modelo .hm y su correspondiente .MEF listo para
OptiStruct. El script trabaja en modo desatendido: borra el modelo activo, crea materiales,
propiedades y secciones, mallado 1D, condiciones de contorno, cargas, caso de carga y
opciones de salida, y finalmente exporta el input deck del solver Optistruct.

El flujo interno es el siguiente. Primero abre el CSV en UTF-8 y salta el encabezado. De
cada línea extrae nombre del modelo, longitud, tipo de sección y dimensiones, material y
propiedades básicas, configuración de apoyos y hasta tres acciones. Con esos datos crea
el material MAT1 y una propiedad PBEAML asociada. La sección se define con una entidad
beamsection y se parametriza según el tipo: ROD usa una dimensión, TUBE dos, BAR dos,
BOX cuatro, e I hasta seis. Para TUBE, BOX e I se incluyen validaciones básicas de geometría
para evitar combinaciones no físicas.

La geometría se genera como una línea entre el origen y la longitud L. El mallado lineal se
hace con un tamaño L/100, lo que produce del orden de un centenar de elementos por viga y
asegura una resolución suficiente en flexión sin coste excesivo.
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La orientación local del elemento se fija con un vector de referencia para mantener el eje
fuerte en el plano XY. En perfiles I se usa una orientación alternativa para alinear alma y alas
de forma coherente.

Las condiciones de contorno se agrupan en un load collector SPC. Para un apoyo simple se
restringen las tres traslaciones en el nodo extremo y se dejan libres las rotaciones, para un
empotramiento se fijan todos los grados de libertad. La identificación de los nodos extremos
se realiza mediante cajas de selección alrededor de x = 0 y x = L con una tolerancia delta
proporcional a L. Las cargas externas se incorporan desde el CSV recorriendo hasta tres
posibles registros. Cada una define tipo, dirección, magnitud y posición a lo largo de la viga.
El script localiza el nodo más cercano a la posición indicada y aplica, en función del tipo, una
fuerza en X o Y o un par alrededor de Z.

A continuación se crea un loadstep estático con los load collectors de SPC y cargas activos.
En case control se habilitan desplazamientos, fuerzas de restricción y tensiones para salida
binaria OP2, que más adelante se leerá con PyNastran. El modelo se guarda como .hm y se
exporta a .fem usando la plantilla de OptiStruct configurada en la ruta optistruct template. Si
la plantilla no existe, se informa por consola.

El script usa codificación UTF-8 para leer el CSV y separa por comas, si los nombres de
modelo o materiales contienen comas, conviene entrecomillar esos campos en el CSV. La
tolerancia delta para localizar nodos puede ajustarse en función de la densidad de malla.
El tamaño de elemento L/100 es un compromiso entre coste y precisión, para cargas muy
localizadas se puede reducir. La gestión de combinaciones de apoyos excluye mecanismos
y normaliza la etiqueta None en el extremo libre. Las magnitudes de las cargas se asumen
en N para fuerzas y N·mm para momentos, coherentes con el sistema de unidades (Sección
2.1.1.

El script completo, con comentarios y rutas parametrizables de entrada y salida, se incluye en
el apéndice y puede referenciarse como Apéndice B.1. Para reproducibilidad, se recomienda
fijar una convención estable de nombres de modelo y conservar junto a cada .MEF su .hm y
la fila original del CSV.

5.4.4. Extracción de resultados OP2 con PyNastran y construcción del dataset

Tras la ejecución de todos los modelos en el solver OptiStruct, los resultados se almacenan
en ficheros OP2 binarios. Para consolidar la información en un único dataset tabular se em-
plea un script en Python basado en PyNastran que recorre la carpeta de resultados, lee cada
OP2 y extrae, por modelo, el desplazamiento nodal máximo y una medida de tensión máxima
representativa (Von Mises). Finalmente, estos valores se unen al CSV de entrada que conte-
nía las características geométricas, de material, apoyos y cargas, de forma que se obtiene un
único fichero con entradas y objetivos de aprendizaje.

PyNastran permite acceder a tablas de desplazamientos nodales (familia OUG), tensiones en
elementos de barra y viga (familia OES) y fuerzas en restricciones (SPCFORCE). En cada
OP2 se carga el primer subcase estático y se calcula el desplazamiento máximo como la
norma euclídea de los vectores de desplazamiento nodal.
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Para la tensión se emplea la salida de tensiones de elementos CBEAM que proporciona
tensiones principales por fibra. Se toma como proxy de tensión máxima la mayor entre las
dos tensiones principales en cada elemento y fibra y luego el máximo global del modelo. Esto
es consistente con la identificación de la zona más crítica bajo flexión y cubre tanto tracción
como compresión, ya que se usa el valor absoluto.

Consistencia de unidades y ejes. Los desplazamientos salen en milímetros y las tensiones
en MPa, coherentes con el sistema {mm,N,MPa} definido en el proyecto. Las tablas pueden
venir en ejes globales o locales según configuración del caso de carga. Con los elementos 1D
CBEAM y el case control empleado, las magnitudes recuperadas se interpretan en el sistema
global, por lo que no se requieren transformaciones adicionales.

Combinado con el CSV de entrada. Para construir el dataset final se crea una tabla intermedia
con las columnas model_name, max_displacement (desplazamiento máximo) y max_stress
(tensión máxima) extraídas de cada OP2 y se realiza una unión interna con el CSV original de
generación por la clave model_name. El resultado contiene, por fila, todas las características
de entrada más los objetivos para aprendizaje supervisado.

El script contempla que alguna tabla no esté presente y devuelve nulos en ese caso. Si un
OP2 no puede leerse o el modelo no converge, se omite su fila. Es recomendable registrar el
número de OP2 procesados, los que aportan desplazamientos, los que aportan tensiones y
los no procesados, para asegurar trazabilidad. En total se generaron 4075 modelos y fueron
descartados 17, quedando finalmente un dataset con 4058 modelos para entrenar.

Las columnas añadidas al dataset se muestran en la Tabla 5.5, incluyendo las variables ob-
jetivo de desplazamiento y tensión como columnas nuevas, además de las ya presentes en
el CSV de entrada:

Tabla 5.5. Salidas extraídas por PyNastran e incorporadas al dataset final.

Columna Descripción

max_displacement Desplazamiento nodal máximo del modelo en mm
max_stress Tensión máxima tomada como envolvente de principales

en elementos CBEAM (Von Mises), en MPa

El código completo de extracción y combinación con Pandas se incluye en el apéndice y
puede referenciarse como Apéndice B.1.

5.5 Preprocesado del conjunto de datos
El conjunto de datos en bruto reúne, para cada viga, su geometría, material, configuración
de apoyos, hasta tres cargas puntuales o momentos y los resultados MEF relevantes. El
propósito del preprocesado es transformar esa información en un conjunto de características
numéricas estables, con sentido físico y adecuadas para el aprendizaje supervisado, de modo
que los modelos reduzcan varianza y mejoren su capacidad de generalización.
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5.5.1. Carga y utilidades numéricas

Se lee el CSV original y se define una división segura safe_div(a, b, ε) con un épsilon
pequeño para evitar divisiones por cero o por valores muy próximos a cero. Esta precaución
es necesaria cuando se normaliza por áreas pequeñas, módulos resistentes o rigideces.

5.5.2. Propiedades de sección por tipología

Para cada tipo de sección se calculan de forma cerrada el área A, el momento de inercia
respecto al eje de flexión Iz, el módulo resistente Wz = Iz/c y una aproximación de la
inercia torsional J . Se contemplan las cinco familias de secciones empleadas en el trabajo:
rectangular maciza, rectangular hueca, circular maciza, tubular circular y perfil en I. En el perfil
en I se compone Iz con el teorema de ejes paralelos sumando alma y alas. En las secciones
huecas se verifica que los espesores efectivos sean positivos.

5.5.3. Rigidez y esbeltez

Se generan magnitudes clásicas de vigas que guían el aprendizaje: la rigidez a flexión EI =

E Iz, el radio de giro rz =
√
Iz/A y razones como L/rz o L3/EI. Estas variables aparecen

en fórmulas de flecha y tensiones y aportan una base física a las relaciones que el modelo
debe capturar.

5.5.4. Longitud efectiva y factor K

Se calcula la longitud efectiva Leff = K L, donde K depende de los apoyos. Se utilizan
los valores habituales: K = 2,0 para voladizo, K = 1,0 para biapoyada, K = 0,5 para
doble empotramiento y K = 0,7 para empotrada–articulada. Además se añaden potencias e
interacciones de Leff que son especialmente informativas para el desplazamiento.

5.5.5. Agregación de cargas y magnitudes equivalentes

Las cargas aplicadas en las vigas se condensan en agregados con significado físico:

• Resultantes FXtotal y FYtotal.

• Momento acumulado respecto al extremo izquierdo MZtotal,left.

• Un sustituto del momento flector máximo Mmax,sss basado en expresiones de viga sim-
plemente apoyada. Para una fuerza puntual P aplicada a distancia a, se aproxima
Mmáx ≈ P a(L− a)/L. Los momentos aplicados contribuyen con su magnitud.

Se normalizan además las posiciones de aplicación de las cargas como fracción de la longi-
tud, x/L, para disminuir sensibilidad a la escala absoluta.
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5.5.6. Escalas físicas para tensiones y flechas

Se construyen dos escalas guía que anclan el orden de magnitud:

σscale =
Mmax,sss

Wz
, δscale =

FYtotal L
3

EI
.

Para reflejar el efecto de los apoyos se incluyen versiones con longitud efectiva, por ejemplo
δscale,eff = FYtotal L

3
eff/EI, así como intensidades de carga FYtotal/L y MZtotal,left/L.

5.5.7. Interacciones y transformaciones estabilizadoras

Se añaden interacciones entre escalas relevantes y combinaciones polinómicas centradas en
el desplazamiento, como L3

eff/EI, L4
eff/EI y productos con Leff. Para mitigar heterogeneidad

y atípicos moderados se aplican transformaciones logarítmicas estables log(1 + x) sobre
magnitudes positivas o en valor absoluto, por ejemplo logEI, logLeff, log δscale y log σscale.

5.5.8. Control de calidad y salida

Durante el cálculo se incluyen comprobaciones geométricas y numéricas: se asegura Di <

Do en tubos, se aplican épsilon en denominadores y se recortan combinaciones incoherentes.
El resultado es un CSV con un subconjunto ordenado de columnas que se usa directamente
en el entrenamiento.

5.5.9. Impacto del preprocesado en las métricas

Los análisis iniciales con variables crudas arrojaron errores elevados por mezcla de escalas,
ausencia de rasgos físico informados y sensibilidad a posiciones absolutas. Tras introducir
EI, Leff, razones como L3

eff/EI y escalas σscale y δscale, el aprendizaje se alinea con la teoría
de vigas. En la práctica, los modelos ajustan correcciones alrededor de relaciones ya apro-
ximadas y se observa una reducción del error y una mejora de la generalización frente a
combinaciones no vistas exactamente en el entrenamiento.

5.6 Entrenamiento con HistGradientBoostingRegressor
Este apartado describe el procedimiento seguido para entrenar modelos de regresión basa-
dos en HistGradientBoostingRegressor (HGBR) para dos objetivos independientes: desplaza-
miento máximo y tensión de Von Mises máxima. El flujo implementa carga de datos, selección
de rasgos numéricos, particionado entrenamiento prueba, ajuste del modelo, evaluación con
métricas estándar y persistencia del modelo entrenado para su uso posterior en la aplicación.

El uso de HGBR es adecuado en datos tabulares con relaciones no lineales moderadas e
interacciones entre variables. La discretización en histogramas acelera el ajuste y aporta re-
gularización adicional, lo que ayuda a estabilizar el aprendizaje con rasgos físico informados.
En este proyecto se observó una mejora sustancial de las métricas frente a modelos entrena-
dos sobre variables crudas, en línea con lo esperado cuando se incorporan escalas y razones
derivadas de la teoría de vigas.
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5.6.1. Datos de entrada y selección de rasgos

Se parte del CSV preprocesado y se filtran las columnas candidatas definidas en la configura-
ción del proyecto, restringiéndolas a variables numéricas disponibles. Las matrices de entrada
X se completan con ceros en valores ausentes, y se crean dos vectores objetivo y: uno para
max_displacement (desplazamiento máximo) y otro para max_stress (tensión máxima). El
conjunto de rasgos finales coincide con la lista de características físico informadas resultante
del preprocesado. Las variables objetivo se mantuvieron sin transformar con el fin de evitar
posibles problemas en la fase de predicción y facilitar la interpretación de los resultados.

5.6.2. Particionado y estabilidad numérica

Cada objetivo se entrena de forma independiente aplicando una partición aleatoria entrena-
miento prueba con proporción fijada en la configuración (30 %) y semilla reproducible (42).

5.6.3. Ajuste del modelo y predicción

Para cada objetivo se instancia un HGBR con los hiperparámetros definidos en la configura-
ción del proyecto y se ajusta con los datos de entrenamiento. A continuación se predicen las
respuestas sobre el subconjunto de prueba.

5.6.4. Métricas de evaluación

Se evalúa el rendimiento en el conjunto de prueba con las métricas habituales: coeficiente de
determinación R2, error absoluto medio (MAE) y error absoluto mediano (MedAE). Adicional-
mente se reportan los tamaños de entrenamiento y prueba para contextualizar los resultados.

5.6.5. Importancia de rasgos y diagnóstico

Para facilitar la interpretación se calculan dos medidas de importancia:

• Importancia por ganancia media a partir de un modelo auxiliar Random Forest entrena-
do sobre el mismo conjunto de entrenamiento.

• Importancia por permutación, calculada sobre el conjunto de prueba para el HGBR y
resumida en las diez características más influyentes.

Estas medidas permiten verificar que el modelo se apoya en variables con sentido físico como
EI, Leff , escalas de flecha del tipo L3

eff/EI y módulos resistentes Wz, entre otras.

5.6.6. Persistencia y trazabilidad

Cada modelo entrenado se guarda en local junto con las características usadas. Esto garan-
tiza que, en inferencia, la aplicación cargue exactamente la misma configuración de rasgos
que se empleó en entrenamiento, evitando desviaciones entre fases.
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5.6.7. Resultados en el conjunto de prueba

Los resultados del modelo final se evaluaron utilizando el conjunto de prueba, obtenido al
dividir el conjunto total de datos en un 70 % para entrenamiento y un 30 % para validación del
rendimiento del modelo. La Tabla 5.6 muestra las métricas obtenidas.

Tabla 5.6. Rendimiento del HGBR en el conjunto de prueba. El desplazamiento está en mm y la tensión en MPa.

target R2 MAE MedAE n_train n_test

max_displacement 0.843 11.6189 2.67829 2839 1218
max_stress 0.960 36.7916 14.1722 2839 1218

Los resultados muestran un ajuste muy alto para la tensión máxima y un rendimiento sólido
para el desplazamiento. Es habitual que el desplazamiento resulte más difícil de predecir
porque depende con mayor sensibilidad de la posición relativa de las cargas y de la longitud
efectiva, mientras que la tensión se ancla bien a escalas basadas en el módulo resistente y
en sustitutos del momento máximo.

5.6.8. Importancia de características

A continuación se resumen las diez características más influyentes según dos enfoques com-
plementarios: un Random Forest auxiliar entrenado sobre el mismo conjunto de entrenamien-
to (importancia por ganancia, Tabla 5.7 y 5.9), y la importancia por permutación calculada
sobre el conjunto de prueba para el propio HGBR, ver Tabla 5.8 y 5.10. Se observan patrones
coherentes con la teoría de vigas: para el desplazamiento destacan combinaciones que in-
cluyen Leff y escalas de tipo L3/EI o L4/EI, mientras que para la tensión domina la escala
σ inducida por el momento sobre el módulo resistente.

Tabla 5.7. Top-10 importancia de características con Random Forest auxiliar para max_displacement

feature importance (RF)

sigma_scale_L_effective_squared 0.296539
sigma_delta_effective_interaction 0.110485
L_effective_squared_L_over_rz 0.069631
L_effective_4_over_EI 0.062302
normalized_load 0.034780
moment_over_stiffness 0.031084
delta_scale_effective 0.030350
log_delta_scale 0.027441
Iz_over_A2 0.021235
J_over_A 0.018755
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Tabla 5.8. Top-10 importancia por permutación para max_displacement

feature importance (permutation)

sigma_scale_L_effective_squared 0.490651
sigma_delta_effective_interaction 0.061058
L_effective_squared_L_over_rz 0.004851
L_effective_4_over_EI 0.032919
normalized_load 0.000000
moment_over_stiffness 0.052159
delta_scale_effective 0.019375
log_delta_scale 0.017604
Iz_over_A2 0.083135
J_over_A 0.007130

Tabla 5.9. Top-10 importancia de características con Random Forest auxiliar para max_stress

feature importance (RF)

log_sigma_scale 0.816521
Iz_over_A2 0.042763
sigma_delta_effective_interaction 0.035271
sigma_scale 0.011597
sigma_delta_interaction 0.006522
load_over_stiffness 0.005669
K_factor_squared 0.005457
K_factor_cubed 0.005354
K_factor 0.005180
load_intensity 0.004783

Tabla 5.10. Top-10 importancia por permutación para max_stress

feature importance (permutation)

log_sigma_scale 1.713227
Iz_over_A2 0.068850
sigma_delta_effective_interaction 0.107981
sigma_scale 0.003374
sigma_delta_interaction 0.001788
load_over_stiffness 0.003760
K_factor_squared 0.042617
K_factor_cubed 0.000000
K_factor 0.000000
load_intensity 0.001911

En conjunto, la importancia aprendida por el modelo coincide con las escalas físicas que
gobiernan el problema. En tensión, la dominancia de log_sigma_scale y de razones geomé-
tricas normalizadas como Iz_over_A2 es consistente con que σ se ancla en el momento y
el módulo resistente. En desplazamiento, la relevancia de combinaciones con Leff y con δ

escala la respuesta con L3/EI y explica la sensibilidad a las condiciones de apoyo y a la
posición de cargas. Esta alineación mejora la interpretación de los resultados y favorece la
generalización.
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5.6.9. Conclusión HGBR

El modelo puede considerarse finalizado, ya que en la última iteración de entrenamiento se
obtuvieron métricas satisfactorias para ambas variables objetivo, como se muestra en la Ta-
bla 5.6.

Para el modelo de desplazamientos máximos se alcanzó un coeficiente de determinación
R2 = 0.843 y un error medio absoluto de 11.62mm. Además, el error absoluto mediano fue
de 2.678mm, lo que indica que el 50 % de las predicciones presentan un error inferior a dicho
valor. Considerando estos resultados, el modelo de desplazamientos puede calificarse como
aceptable, ya que los errores obtenidos son bajos en relación con el objetivo de estimar el
desplazamiento máximo en vigas.

En cuanto a las tensiones máximas, se obtuvo un coeficiente de determinación R2 = 0.960

y un error medio absoluto de 36.79MPa. El error absoluto mediano fue de 14.17MPa, lo
que implica que la mitad de las predicciones presentan un error inferior a este valor. Estos
resultados son muy satisfactorios, especialmente si se compara con el límite elástico de los
materiales empleados como el aluminio, con una resistencia de 270MPa.

Por último, los modelos entrenados se guardaron como artefactos independientes en formato
joblib, uno por cada variable objetivo: model_max_displacement_HGB.joblib y model_ma
x_stress_HGB.joblib. Esta separación permite seleccionarlos desde la interfaz Alabeam
según la predicción requerida, reducir el tiempo y la memoria de carga al utilizar solo el
predictor necesario, y facilitar su mantenimiento al poder actualizar cada archivo de forma
aislada sin afectar al resto del sistema.

5.7 Entrenamiento de la red neuronal
La red neuronal se entrena a partir del conjunto de datos ya preprocesado (Sección 5.5), con
dos objetivos independientes: max_displacement (desplazamiento máximo) y max_stress
(tensión máxima). El propio script construye la matriz de características excluyendo identifi-
cadores y campos categóricos crudos (model_name, section_type, material, support_L,
support_R), convierte todo a float32 y sustituye valores no válidos (NaN, ±∞) por 0.0,
lo que permite entrenar con datos reales donde algunas magnitudes pueden no aplicar en
ciertos casos. Esta preparación se implementa en la función safe_prepare_features del
fichero de entrenamiento de la red neuronal.

Para evaluar con rigor, el conjunto de datos se divide de forma reproducible en tres parti-
ciones: prueba (30 %), validación (20 % de la parte restante) y entrenamiento. Se fija una
semilla global (42) para NumPy y TensorFlow, de modo que los resultados sean repetibles
(DEFAULT_RANDOM_STATE=42). Antes de entrenar se estandarizan las características con
StandardScaler con el que se obtienen los mejores resultados (también se probaron alter-
nativas como MinMax, Robust o PowerTransformer), guardando posteriormente el escalador
y la lista de columnas utilizadas para asegurar su uso idéntico en despliegue.

El script ofrece tres arquitecturas densas en Keras. Las variantes simple y medium usan
bloques densos con activación ReLU, normalización por lotes y abandono, además de regu-
larización L2 en los pesos.
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En concreto, la opción simple emplea capas de 64 y 32 neuronas con abandonos de 0.30
y 0.20, mientras que medium amplía la capacidad con 128, 64 y 32 neuronas y abandonos
de 0.35 y 0.25. La arquitectura ultimate sigue un diseño en paralelo con tres caminos: uno
profundo (64–32–16), otro ancho (128–32) y un bloque residual ligero (64–64 con salto), que
se concatenan y pasan por capas finales de 32 y 16 neuronas antes de la salida escalar.
Este esquema busca capturar relaciones de distinta complejidad sin disparar el número de
parámetros y mostró buen compromiso entre sesgo y varianza en los ensayos.

El plan de optimización utiliza el optimizador Adam y una función de pérdida Huber, adecuada
cuando puede haber valores atípicos moderados. Para estabilizar y acelerar la convergencia
se combinan varias rutinas: parada temprana con restauración de los mejores pesos, re-
ducción automática de la tasa de aprendizaje al estancarse la validación y un programador
triangular cíclico opcional que explora pequeñas variaciones periódicas en la tasa de apren-
dizaje. Los hiperparámetros por defecto son 250 épocas como máximo, tamaño de lote 32 y
una paciencia de 30 épocas.

El entrenamiento se realiza por objetivo: para cada una de las variables max_displacement y
max_stress se ajusta un modelo de salida única, se evalúa sobre el conjunto de prueba y se
registran métricas estándar de regresión (R2, MAE, MedAE, RMSE y MAPE). Tras el ajuste,
el script guarda el mejor modelo en formato .keras junto con el escalador y las columnas
de entrada en un .joblib, y genera además un resumen JSON con rutas y métricas para
trazabilidad. Esta lógica se encapsula en las funciones train_one_target y run_training,
e incluye una interfaz de línea de comandos que permite elegir objetivo, arquitectura, tipo de
escalado y tamaños de partición.

Con este flujo, la red neuronal queda entrenada de forma reproducible, con preprocesado
coherente y artefactos de despliegue versionados, de modo que posteriormente puede car-
garse el modelo y aplicar exactamente el mismo escalado sobre las mismas características
al integrarlo en la aplicación.

5.7.1. Resultados del modelo neuronal

La red neuronal se entrenó utilizando la tres arquitecturas mencionadas anteriormente (sim-
ple, medium, ultimate) y se evaluaron de forma independiente para cada una de las dos
variables objetivo.

En la Tabla 5.11 se recogen los resultados obtenidos para los tres modelos entrenados de la
red neuronal (Simple, Medium y Ultimate) en la predicción tanto del desplazamiento máximo
como de la tensión máxima.

Para el caso del desplazamiento máximo, el modelo Ultimate ofrece el mejor rendimiento,
alcanzando un coeficiente de determinación R2 = 0.8686, un error medio absoluto (MAE)
de 10.20mm y un error cuadrático medio (RMSE) de 26.49mm. Por tanto, se selecciona este
modelo como el definitivo para la predicción de desplazamientos en vigas, dado que presenta
una mayor capacidad de generalización y un error significativamente menor respecto a las
otras arquitecturas.
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En el caso de la tensión máxima, el modelo Simple obtiene el mejor equilibrio entre preci-
sión y estabilidad, con un R2 = 0.9290, un MAE de 54.41MPa y un RMSE de 107.30MPa.
Aunque el modelo Ultimate presenta un MAE ligeramente inferior, su peor rendimiento en
R2 y RMSE indica una mayor dispersión en los errores, lo que resulta menos adecuado en
este contexto, donde es prioritario minimizar los errores elevados cercanos al límite elástico
del material. Por ello, se adopta el modelo Simple como el más apropiado para la predicción
de tensiones.

Tabla 5.11. Resultados de los modelos neuronales para el desplazamiento y la tensión máximos

Variable objetivo Modelo R2 MAE RMSE

Desplazamiento máx. [mm] Simple 0.7902 13.05 33.47

Medium 0.8360 11.03 29.59

Ultimate 0.8686 10.20 26.49

Tensión máx. [MPa] Simple 0.9290 54.41 107.30
Medium 0.9264 55.00 109.25

Ultimate 0.8982 50.98 128.42

En la Figura 5.5 se presentan las curvas de entrenamiento y validación del error (Loss) y
del error medio absoluto (MAE) correspondientes a las tres arquitecturas de red neuronal
desarrolladas para la predicción del desplazamiento máximo: Simple, Medium y Ultimate.

En todos los casos, las curvas muestran una disminución pronunciada del error durante las
primeras épocas, seguida de una fase de estabilización en la que la pérdida converge ha-
cia un valor mínimo. Este comportamiento es indicativo de un entrenamiento adecuado, sin
síntomas de divergencia ni sobreajuste severo.

En la arquitectura Simple, las curvas de entrenamiento y validación evolucionan de forma
muy similar, manteniendo una diferencia reducida entre ambas a lo largo de las épocas. Esto
sugiere una buena capacidad de generalización, aunque el valor final del error es más elevado
en comparación con las arquitecturas más complejas, lo que limita su precisión.

El modelo Medium presenta una convergencia más lenta, pero alcanza valores de pérdida y
MAE inferiores a los del modelo Simple. La diferencia entre las curvas de entrenamiento y
validación aumenta ligeramente, lo que indica un ajuste más fino de los parámetros y una ma-
yor capacidad de representación, aunque con un ligero riesgo de sobreajuste en las últimas
épocas.

Por último, la arquitectura Ultimate muestra el mejor rendimiento global. Se observa una
reducción notable del error de entrenamiento hasta valores muy bajos y una validación que
se mantiene estable sin incrementos significativos, lo que refleja un equilibrio adecuado en-
tre ajuste y generalización. No obstante, la separación entre las curvas de entrenamiento y
validación es algo mayor que en los modelos previos, lo que puede asociarse a una mayor
complejidad de la red y, por tanto, a una sensibilidad superior frente al ruido de los datos.
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En conjunto, las gráficas confirman que el modelo Ultimate es el que alcanza la mejor pre-
cisión en la predicción del desplazamiento máximo, con un proceso de aprendizaje eficiente
y una validación estable, justificando su selección como arquitectura final.

(a) Simple

(b) Medium

(c) Ultimate

Figura 5.5. Evolución de la pérdida (Loss) y del MAE durante el entrenamiento de las tres arquitecturas de red
neuronal para la predicción del desplazamiento máximo
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En la Figura 5.6 se muestran las curvas de entrenamiento y validación del error (Loss) y
del error medio absoluto (MAE) correspondientes a las tres arquitecturas de red neuronal
empleadas para la predicción de la tensión máxima: Simple, Medium y Ultimate.

En general, las tres arquitecturas presentan un comportamiento estable durante el entrena-
miento, con una reducción rápida del error en las primeras épocas y una tendencia a la con-
vergencia conforme avanza el proceso de aprendizaje. Esto indica que el modelo ha logrado
ajustarse correctamente a los datos sin presentar problemas significativos de divergencia.

En el modelo Simple, tanto la pérdida de entrenamiento como la de validación disminuyen
de forma progresiva y casi paralela, con una separación pequeña entre ambas curvas. Este
comportamiento evidencia una buena capacidad de generalización y ausencia de sobreajus-
te, aunque el ritmo de aprendizaje es más lento y los valores finales de error son superiores
a los de las arquitecturas más complejas.

La arquitectura Medium muestra una caída más rápida de la pérdida durante las primeras
épocas y alcanza valores de error menores que el modelo Simple. La ligera separación entre
las curvas de entrenamiento y validación sugiere que la red ha captado mejor las relaciones
no lineales de los datos, aunque empieza a reflejar una tendencia leve al sobreajuste hacia
el final del entrenamiento.

Por último, el modelo Ultimate alcanza la convergencia más estable y uniforme, con curvas
de entrenamiento y validación prácticamente paralelas y con una diferencia muy reducida.
Este resultado confirma que la arquitectura es capaz de generalizar correctamente y mante-
ner un error controlado, aunque la pérdida de validación se estabiliza ligeramente por encima
de la de entrenamiento, lo cual es un comportamiento normal en redes bien ajustadas.

En conjunto, las gráficas de las curvas de pérdida confirman que todas las arquitecturas
se entrenaron de forma adecuada, siendo la red Ultimate la que presenta un aprendizaje
más eficiente y una validación más consistente. No obstante, el modelo Simple se considera
más robusto frente a posibles errores extremos, por lo que se selecciona finalmente para la
predicción de tensiones máximas.
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(a) Arquitectura Simple

(b) Arquitectura Medium

(c) Arquitectura Ultimate

Figura 5.6. Evolución de la pérdida (Loss) y del MAE durante el entrenamiento de las tres arquitecturas de red
neuronal para la predicción de la tensión máxima

En la Figura 5.7 se presentan los resultados de las predicciones para las tres arquitecturas de
red neuronal desarrolladas (Simple, Medium y Ultimate) en la estimación del desplazamiento
máximo. Cada fila muestra, de izquierda a derecha, la comparación entre valores reales y
predichos, el diagrama de residuos y la distribución de los errores.

En los gráficos de dispersión (predicciones frente a valores reales) se observa que la nube de
puntos sigue de manera general la diagonal ideal (línea discontinua roja), lo que indica una
buena correlación entre los valores predichos y los reales.
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(a) Arquitectura Simple

(b) Arquitectura Medium

(c) Arquitectura Ultimate

Figura 5.7. Comparación valores reales/predichos, distribución y análisis de residuos para las tres arquitecturas
de red neuronal en la predicción del desplazamiento máximo

Este comportamiento mejora progresivamente desde la arquitectura Simple hasta la Ultimate,
siendo esta última la que alcanza un coeficiente de determinación más alto (R2 = 0.87) y una
alineación más estrecha con la línea de referencia, lo que evidencia una mayor precisión del
modelo.

Los diagramas de residuos muestran que, en los tres casos, los errores se distribuyen de
forma aproximadamente simétrica alrededor de cero, sin patrones sistemáticos evidentes. Sin
embargo, se aprecia una ligera dispersión creciente de los residuos a medida que aumentan
los valores predichos, especialmente en los modelos Simple y Medium, lo que indica que las
predicciones tienden a ser menos precisas para desplazamientos más grandes. En el modelo
Ultimate, la dispersión es más contenida y la concentración de los residuos en torno a cero
es mayor, lo que confirma una mejor capacidad de generalización.
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Por último, las distribuciones de residuos presentan una forma aproximadamente normal, cen-
trada en cero, lo que sugiere que los errores no muestran sesgos significativos. La arquitec-
tura Ultimate destaca por tener una distribución más estrecha, reflejando menor variabilidad
y mayor consistencia en las predicciones.

En conjunto, el análisis de las gráficas confirma que el modelo Ultimate es el más preciso
y equilibrado para la predicción del desplazamiento máximo, al combinar una alta correlación
entre valores reales y predichos con una distribución de errores estable y centrada.

En la Figura 5.8 se presentan los resultados obtenidos en la predicción de la tensión máxima
para las tres arquitecturas de red neuronal: Simple, Medium y Ultimate. Cada una de ellas
incluye, de izquierda a derecha, el gráfico de correlación entre valores reales y predichos, el
diagrama de residuos y la distribución de los errores.

En los diagramas de dispersión se aprecia una fuerte correlación entre los valores reales
y los predichos, con los puntos distribuidos mayoritariamente a lo largo de la diagonal de
referencia (línea discontinua roja). El modelo Simple alcanza un coeficiente de determinación
R2 = 0.93, lo que evidencia un excelente ajuste entre las predicciones y los valores reales.
Las arquitecturas Medium y Ultimate presentan también un buen desempeño (R2 = 0.93 y
R2 = 0.90, respectivamente), aunque con una ligera mayor dispersión en los valores más
altos de tensión.

El análisis de los residuos muestra que, en los tres modelos, los errores se distribuyen de
forma aproximadamente simétrica en torno a cero, sin tendencias sistemáticas claras, lo que
indica que las predicciones no presentan sesgos evidentes. En el caso de la arquitectura
Simple, los residuos son más compactos y se concentran alrededor del eje horizontal, refle-
jando una buena generalización y menor variabilidad. En cambio, en el modelo Ultimate, los
residuos muestran una dispersión ligeramente mayor, especialmente para tensiones eleva-
das, lo que sugiere una mayor sensibilidad a los valores extremos del conjunto de datos.

Las distribuciones de los residuos presentan una forma casi normal, centrada en cero, con
colas reducidas y una frecuencia muy elevada en torno al valor medio. De nuevo, la arquitec-
tura Simple destaca por una distribución más estrecha y simétrica, mientras que los modelos
Medium y Ultimate presentan colas algo más extendidas, consecuencia de una mayor com-
plejidad en la red.
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(a) Arquitectura Simple

(b) Arquitectura Medium

(c) Arquitectura Ultimate

Figura 5.8. Comparación valores reales/predichos, distribución y análisis de residuos para las tres arquitecturas
de red neuronal en la predicción de la tensión máxima

En conjunto, el análisis de estas gráficas confirma la alta capacidad predictiva del modelo
Simple, que combina una excelente correlación entre valores reales y estimados con una
distribución de errores bien equilibrada y sin sesgos. Por estos motivos, este modelo se con-
sidera el más adecuado para la predicción de la tensión máxima en vigas.

Finalmente los modelos seleccionados son la arquitectura ultimate para los desplazamientos
y la arquitectura simple para la tensión máxima. Para su uso posterior, cada predictor se
guarda como artefactos independientes: el modelo en formato Keras y el escalador con las
columnas de entrada. En particular, para desplazamiento máximo se genera models/model
_max_displacement_ultimate.keras y models/scaler_max_displacement_ultimate.
joblib; para tensión máxima, models/model_max_stress_simple.keras y models/scale
r_max_stress_simple.joblib. Esta separación permite cargar solo el predictor necesario
en la aplicación, garantiza que el preprocesado reproducible (escalado y orden de variables)
sea idéntico en inferencia y facilita la actualización de cada objetivo de forma aislada.
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5.8 Predicción empleando los modelos entrenados
5.8.1. Predicción con el modelo HGBR

Para realizar predicciones sobre nuevos casos se emplea el script HGBR_predict.py. El
programa carga los modelos entrenados en formato joblib, prepara las entradas de acuerdo
con el conjunto de características usado en el entrenamiento y, si existen valores reales en el
CSV, calcula métricas y genera gráficos de diagnóstico. El flujo interno es:

• load_model: carga un paquete joblib con las claves "hgb" (modelo), "features"
(lista de variables) y "eps" (parámetro almacenado para referencia).

• preprocess_input: toma el CSV, selecciona solo columnas numéricas y las cruza con
ML_CANDIDATE_FEATURES del módulo config. El resultado es la matriz X con el orden
de variables correcto.

• predict_and_plot: aplica hgb.predict(X) y, si hay verdad terreno, calcula R2 y MAE;
además guarda tres figuras: correlación real–predicho, histograma de residuales y resi-
duales frente a predicción.

La ejecución por línea de comandos es:

python HGBR_predict.py <input_csv> \
<model_max_displacement_HGB.joblib> \
<model_max_stress_HGB.joblib> \
<output_dir>

donde <input_csv> es un fichero con las mismas columnas de entrada utilizadas en el en-
trenamiento (no es necesario escalar ni normalizar), y <output_dir> es el directorio donde
se deja el informe gráfico y las predicciones.

El script espera, si están disponibles, las columnas objetivo max_displacement y max_stress
(definidas en config.TARGET_COLUMNS).

La Tabla 5.12 muestra las entradas necesarias para hacer predicciones a partir de un conjunto
de datos ya procesado utilizando el modelo HGBR entrnado. En la Tabla 5.13 se muestran
las salidas esperadas una vez terminadas las predicciones.
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Tabla 5.12. Entradas requeridas por el script de predicción con HGBR

Entrada Descripción

<input_csv> Archivo CSV con las características numéricas de entrada. Si
contiene las columnas max_displacement y max_stress, el
script calcula y reporta las métricas de evaluación correspon-
dientes.

model_max_displaceme
nt_HGB.joblib

Modelo joblib entrenado para el objetivo de desplazamiento
máximo.

model_max_stress_HGB
.joblib

Modelo joblib entrenado para el objetivo de tensión máxima.

<output_dir> Directorio de salida donde se guardan los gráficos generados y
el archivo CSV con las predicciones.

Tabla 5.13. Salidas generadas por el script HGBR_predict.py

Fichero generado Contenido

correlacion_max_displace
ment.png

Gráfico de dispersión entre valores reales y predichos pa-
ra el desplazamiento máximo, con línea de identidad y
anotación del R2 y MAE.

residuales_hist_max_disp
lacement.png

Histograma de los residuales obtenidos en la predicción
del desplazamiento máximo.

residuales_vs_pred_max_d
isplacement.png

Gráfico de residuales frente a valores predichos, utilizado
para diagnosticar posibles sesgos del modelo.

correlacion_max_stress.png Gráfico análogo al anterior, correspondiente al objetivo
de tensión máxima.

residuales_hist_max_stre
ss.png

Histograma de residuales obtenidos en la predicción de
la tensión máxima.

residuales_vs_pred_max_s
tress.png

Gráfico de residuales frente a valores predichos para la
tensión máxima.

predicciones.csv Archivo CSV de salida que incluye las predicciones gene-
radas en nuevas columnas: max_displacement_pred y
max_stress_pred.

Notas finales: el modelo HGBR no requiere estandarización, el script filtra de forma segu-
ra las columnas no numéricas y respeta el orden de features almacenado en los paque-
tes joblib. Si el conjunto de columnas del CSV no coincide con el esperado, el cruce con
ML_CANDIDATE_FEATURES evita errores de forma silenciosa, aunque conviene revisar el regis-
tro de métricas y los gráficos para detectar posibles pérdidas de información en la entrada.
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5.8.2. Predicción con red neuronal

Este script (NN_predict.py) realiza predicción con los modelos entrenados de Keras. Carga
el modelo .keras y el escalador guardado en .joblib, prepara las entradas desde un CSV
y genera las predicciones para el objetivo indicado. Si el CSV trae la columna de verdad
terreno, calcula R2 y MAE y guarda figuras de evaluación.

Flujo de trabajo

1. Carga del archivo .joblib que contiene el escalador y la lista de columnas usadas en
entrenamiento (feature_cols).

2. Lectura del CSV de entrada y construcción de la matriz X exactamente con feature_cols.
Las columnas ausentes se crean con valor 0.0 y se fuerza el tipo numérico seguro
(float32).

3. Transformación de X con el escalador y carga del modelo .keras.

4. Predicción del objetivo en todo el conjunto.

5. Si existe la columna objetivo, cálculo de R2 y MAE y generación de tres figuras: corre-
lación real vs. predicho, histograma de residuales y residuales frente a predicción.

6. Opcionalmente, exportación de un CSV con las predicciones añadiendo una nueva co-
lumna predicted_<target>.

Parámetros principales

• --data: ruta al CSV con las variables de entrada.

• --model: ruta al modelo .keras.

• --scaler: ruta al .joblib exportado durante el entrenamiento; incluye scaler y feature_cols.

• --target: nombre del objetivo a predecir (max_stress o max_displacement).

• --ycol (opcional): nombre alternativo de la columna objetivo si no coincide con --target.

• --outdir: carpeta donde se guardan las figuras y el informe de métricas.

• --save_csv (opcional): ruta para escribir un CSV con las predicciones añadidas.

Ejemplos de uso

--- Tensión máxima ---
python NN_predict.py \
--data data/test.csv \
--model models/model_max_stress_ultimate.keras \
--scaler models/scaler_max_stress_ultimate.joblib \
--target max_stress \
--outdir eval_stress \
--save_csv predicciones_stress.csv
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--- Desplazamiento máximo ---
python NN_predict.py \
--data data/test.csv \
--model models/model_max_displacement_ultimate.keras \
--scaler models/scaler_max_displacement_ultimate.joblib \
--target max_displacement \
--outdir eval_disp

Salida Si el CSV incluye la variable objetivo, el script imprime R2 y MAE en consola y guarda
en --outdir las figuras correlacion_<target>.png, residuales_hist_<target>.png y
residuales_vs_pred_<target>.png. Con --save_csv se genera un CSV con la columna
predicted_<target>.

Nota práctica Si aparecen avisos de columnas faltantes significa que el CSV no contiene
todas las características de entrenamiento. Para explotar bien el modelo conviene reconstruir
dichas columnas con el mismo preprocesado que se aplicó antes de entrenar.

5.9 Conclusiones del desarrollo de modelos
Se ha implementado un flujo completo para la generación y explotación de datos sintéticos
orientado a la predicción del comportamiento estructural de vigas. La cadena metodológica
ha comprendido: (i) modelado paramétrico y mallado en HyperMesh, (ii) resolución numérica
con Optistruct, (iii) extracción automática de resultados mediante PyNastran para conformar
el dataset con variables de entrada (longitud, tipo de sección, material, cargas y condiciones
de contorno) y salidas de interés (desplazamiento y tensión máximos), y (iv) un preprocesado
extensivo con feature engineering basado en expresiones de cálculo de vigas, con el fin de
incorporar información física relevante y estabilizar el aprendizaje.

Con un total de 4058 casos y una partición 70/30 (2 839 para entrenamiento y 1 218 para
prueba), el modelo HGBR ha mostrado un rendimiento sólido en ambos objetivos: para des-
plazamiento máximo se alcanzó R2 = 0.843, MAE = 11.62mm y MedAE = 2.68mm; para
tensión máxima, R2 = 0.960, MAE = 36.79MPa y MedAE = 14.17MPa. Estos resultados
confirman que un modelo de boosting con histogramas, correctamente regularizado e infor-
mado por variables ingenieriles, es capaz de capturar con eficacia las no linealidades del
problema.

Con objeto de comparar enfoques, se entrenaron distintas arquitecturas de red neuronal. La
mejor configuración para desplazamiento fue la arquitectura ultimate, con R2 = 0.8686,
MAE = 10.20mm, MedAE = 1.91mm y RMSE = 26.49mm, superando al HGBR en todas
las métricas principales y mostrando, por tanto, una mayor capacidad de generalización para
este objetivo. En tensión, la arquitectura simple ofreció el mejor compromiso para el uso
previsto del modelo, con R2 = 0.9290, MAE = 54.41MPa, MedAE = 25.96MPa y RMSE =

107.30MPa. Aunque algunas arquitecturas profundas reducen ligeramente el MAE, su peor
R2 y/o RMSE indican mayor variabilidad y errores extremos más probables, algo indeseable
cerca del límite elástico.
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En consecuencia, y de acuerdo con los análisis de aprendizaje, dispersión y residuos:

• Para desplazamiento máximo, se selecciona la red neuronal ultimate, por su mejor
R2, menor MAE y MedAE, y distribución de errores más concentrada.

• Para tensión máxima, se adopta el modelo neuronal simple (frente a alternativas más
complejas), por su equilibrio entre precisión global y control de errores grandes (RMSE
competitivo), criterio más seguro en un contexto con restricciones de resistencia.

Durante la validación se ha observado que el MAPE puede ser engañoso en desplazamientos
debido a la presencia de valores reales cercanos a cero, lo que magnifica el porcentaje de
error, por ello, el análisis se ha apoyado preferentemente en R2, MAE, MedAE y RMSE.
Asimismo, aunque los datos sintéticos permiten explorar un dominio amplio de diseño con
bajo coste, la capacidad de extrapolación fuera del espacio de parámetros muestreado debe
considerarse limitada.

En suma, el pipeline propuesto integra simulación numérica, extracción sistemática de resul-
tados y aprendizaje supervisado con feature engineering físico, alcanzando modelos precisos
y estables para ambos objetivos. Esta base es adecuada para su integración en la aplicación
Alabeam y para su extensión futura a: (i) ampliación y estratificación del dataset con nuevos
materiales y esquemas de carga, (ii) calibración con datos experimentales o de campo, (iii)
técnicas de estimación de incertidumbre (ensembles, MC dropout) y umbrales de confianza
operativos, y (iv) optimización multiobjetivo (peso–rigidez–tensión) asistida por los modelos
seleccionados.
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5.10 Implementación de la interfaz Alabeam
La interfaz Alabeam se ha desarrollado con Streamlit para ofrecer una herramienta de pre-
dicción accesible a usuarios sin experiencia en cálculo. La aplicación encapsula el preproce-
sado y los modelos entrenados, permitiendo seleccionar la geometría y las condiciones de
contorno de una viga 2D y obtener al instante la estimación del desplazamiento máximo y de
la tensión equivalente de Von Mises máxima.

La Figura 5.9 muestra el aspecto general de la interfaz de Alabeam.

Figura 5.9. Interfaz gráfica de la app Alabeam en Streamlit

5.10.1. Estructura del proyecto

El proyecto se encuentra en el repositorio referenciado en [29]. El proyecto de Alabeam sigue
la siguiente estructura explicada en el Apéndice B.2

El archivo Alabeam.py contiene la interfaz y el enrutado de acciones. El módulo preprocessing.py
replica exactamente el pipeline de creación de rasgos utilizado en el entrenamiento, lo que ga-
rantiza que las columnas, los escalados y las transformaciones son consistentes. En models
se alojan los estimadores basados en árboles (.joblib). En models_neural se guardan los
modelos Keras (.keras), los escaladores (.joblib) y el listado canónico de columnas de
entrada para la red (feature_columns_neuralnet.csv).

5.10.2. Flujo de uso

1. El usuario define la longitud de la viga, el tipo de sección, sus dimensiones nominales,
el material, la configuración de apoyos y hasta tres acciones concentradas o momen-
tos. La nomenclatura de dimensiones sigue la empleada en HyperMesh y la tabla de
equivalencias presentada en el desarrollo. En la Figura 5.10 se muestra una viga de
ejemplo de 1500 mm de longitud, sección tipo rectangular hueca y material aluminio.

72



Predicción Inteligente del Comportamiento Mecánico de
Vigas usando Machine Learning y Análisis por Elementos
Finitos

Daniel López López

Figura 5.10. Ejemplo de selección de una viga en Alabeam

2. La aplicación valida unidades y rango. Se trabaja en mm, N y MPa. Se comprueban
espesores positivos (Figura 5.11), esbeltez razonable y ausencia de mecanismos en
los extremos (Figura 5.12).

Figura 5.11. Ejemplo de advertencia por radio externo incoherente
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Figura 5.12. Ejemplo de advertencia por mecanismo

3. Como se muestra en la Figura 5.13 en la zona inferior se dispone del área de selección
de cargas, donde se permite seleccionar hasta tres. También se muestra un esquema
para previsualizar el modelo de la viga según los datos introducidos.

Figura 5.13. Selección de cargas y visualización

74



Predicción Inteligente del Comportamiento Mecánico de
Vigas usando Machine Learning y Análisis por Elementos
Finitos

Daniel López López

4. Con los datos validados, preprocessing.py genera las variables físico-informadas uti-
lizadas en el entrenamiento: magnitudes como EI, Wz, rz, escalas L3/EI, L4/EI,
razones adimensionales y agregados de carga. Para la red neuronal, se reordena el
vector de entrada con feature_columns_neuralnet.csv y se aplica el escalado guar-
dado.

5. El usuario puede elegir el modelo de predicción: HGBR o red neuronal (Figura 5.14).
Alabeam carga en memoria los modelos la primera vez y los reutiliza en sesiones pos-
teriores. Además, se implementa el uso de si se desea un factor de seguridad para
obtener predicciones más conservativas.

Figura 5.14. Selección de modelos y factor de seguridad

6. Se ejecuta la predicción y se presentan los resultados principales: desplazamiento má-
ximo [mm] y tensión de Von Mises máxima [MPa]. De forma auxiliar se muestran reco-
mendaciones según los resultados obtenidos. La Figura 5.15 muestra unos resultados
de ejemplo con recomendaciones.

Figura 5.15. Resultado de predicciones en Alabeam
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Se muestra de forma gráfica el porcentaje de uso del material para considerar el cambio
por otro material. En el ejemplo de la Figura 5.16 las tensión máximas están muy por
debajo del límite elástico por lo que se podría considerar otro material más económico.

Figura 5.16. Porcentaje de tensión respecto al límite elástico del material

7. Opcionalmente se puede descargar un resumen en CSV con entradas, variables y sa-
lidas para trazabilidad.

5.10.3. Motores de predicción

HGBR. Se emplean los ficheros model_max_displacement_logHGB.joblib y model_
max_stress_logHGB.joblib. No requieren estandarización de entradas, pero sí el mismo
conjunto de rasgos que en entrenamiento. El sufijo logHGB indica que se entrenó en un es-
pacio de rasgos y objetivos coherente con las escalas físicas, tal y como se documenta en el
capítulo de entrenamiento.

Red neuronal. Se usan model_max_displacement_neuralnet.keras y model_max_stre
ss_neuralnet.keras junto con los escaladores scaler_displacement_neuralnet.joblib
y scaler_stress_neuralnet.joblib. Antes de inferir, Alabeam aplica el transformador
correspondiente y garantiza el orden de las columnas incluyéndolo en el scaler.

5.10.4. Entradas disponibles

• Longitud entre 150 y 5000 mm.

• Secciones: circular maciza, circular hueca, rectangular maciza, rectangular hueca y
perfil en I. Las dimensiones se introducen con la misma convención de HyperMesh.

• Materiales: aceros al carbono e inoxidable, aluminio y titanio. Sus propiedades por de-
fecto son las usadas en el dataset, editables por el usuario si lo desea.

• Apoyos: empotrado–libre, simple–simple y mixtos empotrado–simple o simple–empotrado.

• Acciones: hasta tres cargas puntuales en X o Y y momentos alrededor de Z, con posi-
ción a lo largo de la luz.
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Factor de seguridad El usuario puede introducir un factor de seguridad FS ≥ 1 para
mayorar de forma conservadora las salidas. Las magnitudes mostradas se actualizan como

σ⋆
vm = FS σvm, w⋆

máx = FS wmáx,

y la comparación con el material se realiza con el valor mayorado. El indicador de utilización
se define como

utilización =
σ⋆
vm

σy
,

donde σy es el límite elástico del material seleccionado.

Sistema de recomendaciones Además de los valores numéricos, Alabeam genera reco-
mendaciones automáticas que ayudan a interpretar la predicción y a orientar decisiones de
rediseño. El motor aplica reglas simples basadas en dos señales: la utilización por tensión y
el desplazamiento máximo.

Reglas basadas en tensión

Sea r = σ⋆
vm/σy.

• Si r < 0.3 (baja utilización), se sugiere optimización por material. Por ejemplo, si se usa
titanio se propone acero o aluminio; si se usa acero, se propone aluminio. El objetivo
es reducir coste o masa cuando existe mucho margen.

• Si 0.9 < r < 1.0 (zona próxima al límite), se emite un aviso e indica opciones para
incrementar resistencia del material o aumentar área de sección.

• Si r ≥ 1.0 (supera el límite elástico), se marca como condición crítica y se recomiendan
materiales de mayor resistencia o un incremento de sección.

• Si r > 0.5 y no se cumple ninguno de los casos anteriores, se informa de una utilización
moderada con margen razonable.

Reglas basadas en desplazamiento

Con el desplazamiento mayorado w⋆
máx:

• Si w⋆
máx > 10mm, se recomienda aumentar rigidez elevando el momento de inercia de

la sección, emplear un material con mayor módulo elástico E o reducir la luz mediante
apoyos intermedios.

• Si w⋆
máx < 1mm, se informa de rigidez adecuada.

Reglas combinadas y de eficiencia

• Si r > 0.9 y w⋆
máx > 5mm, se emite una recomendación de revisión completa del

diseño, dado que fallan simultáneamente rigidez y resistencia.

• Si r < 0.2 y w⋆
máx < 2mm, se identifica oportunidad clara de optimización, ya sea

reduciendo dimensiones o empleando materiales más económicos.
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5.10.5. Ejecución y despliegue

El archivo requirements.txt fija versiones de scikit-learn, tensorflow, joblib, pandas,
numpy y streamlit. La aplicación se ejecuta con:

pip install -r requirements.txt
streamlit run Alabeam.py

En ejecución local, Alabeam guarda en caché los modelos y escaladores para minimizar el
tiempo de respuesta. El log de predicción registra fecha, versión del modelo cargado y métri-
cas de referencia almacenadas en models/metrics y en models_neural/*performance.csv.

Con el fin de facilitar la interacción con los modelos desarrollados y ofrecer una herramienta
accesible desde cualquier dispositivo, la aplicación Alabeam se ha desplegado en la plata-
forma Streamlit Cloud. Este entorno permite ejecutar aplicaciones de machine learning con
interfaz gráfica de forma sencilla y gratuita, integrando tanto la lógica de predicción como la
visualización de resultados.

El despliegue se ha realizado utilizando la capa gratuita del servicio, lo que permite acceder
a la aplicación directamente a través de la dirección web:

https://Alabeam.streamlit.app

Esta versión alojada en la nube ejecuta la interfaz desarrollada en Streamlit y los modelos
entrenados de desplazamiento y tensión máxima, proporcionando una experiencia de usua-
rio intuitiva y sin necesidad de instalación local. No obstante, la principal limitación del plan
gratuito es que la instancia permanece activa únicamente durante aproximadamente 12 ho-
ras de inactividad. Transcurrido este tiempo, el servicio entra en modo sleep (reposo), por lo
que al intentar acceder nuevamente es necesario pulsar el botón “Wake up” o “Despertar”.
En ese momento, el entorno tarda unos segundos en reactivarse antes de que la aplicación
vuelva a estar completamente operativa.

A pesar de esta limitación, el despliegue en Streamlit Cloud constituye una solución eficaz
para la difusión y validación funcional del proyecto, al permitir el acceso remoto a Alabeam
sin requerir configuraciones locales adicionales.
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Capítulo 6. RESULTADOS Y DISCUSIÓN
6.1 Validación externa con 50 casos independientes
Para verificar la capacidad de generalización del modelo fuera de los datos usados en entre-
namiento y prueba, se construyó un conjunto adicional de 50 vigas no vistas. Con este lote
se evaluó el HistGradientBoostingRegressor y la red neuronal entrenados y se representó
la correlación entre valores reales y predichos. La línea discontinua indica la recta identidad
y = x.

Resultados con HGBR En la predicción de tensión de Von Mises máxima se obtuvo R2 ≈
0,978 y MAE ≈ 21,38 MPa (Figura 6.2), con puntos muy próximos a la diagonal y residuales
acotados, aunque con ligera heterocedasticidad a tensiones altas (Figura 6.3). Para el despla-
zamiento máximo el ajuste fue más modesto (R2 ≈ 0,872, MAE ≈ 8,43 mm) (Figura 6.1): los
puntos de mayor desplazamiento muestran mayor dispersión y una tendencia a subestimar
los valores más grandes, coherente con un sesgo hacia regímenes más rígidos del espacio
de diseño. Esto también se ve reflejado en la gráfica de residuos de la Figura 6.4.

Figura 6.1. HGBR - Desplazamiento máximo. Figura 6.2. HGBR - Tensión máxima.
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Figura 6.3. HGBR - Residuos desplazamiento
máximo

Figura 6.4. HGBR - Residuos tensión máxima

Resultados con la red neuronal En el mismo conjunto independiente, la red neuronal
alcanzó R2 ≈ 0,988 y MAE ≈ 21,89 MPa para tensión máxima (Figura 6.6), con dispersión
similar a la de HGBR en el rango alto (Figura 6.7). En desplazamiento máximo el salto fue
notable: R2 ≈ 0,980 y MAE ≈ 4,09 mm (Figura 6.5), con una nube muy ceñida a la diagonal
y residuales estrechos salvo algunos casos aislados de gran flecha (Figura 6.8).

Figura 6.5. NN - Desplazamiento máximo Figura 6.6. NN - Tensión máxima
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Figura 6.7. NN - Residuos desplazamiento máximo Figura 6.8. NN - Residuos tensión máxima

La Tabla 6.1 muestra un resumen de los resultados obtenidos para cada variable objetivo en
los dos modelos.

Tabla 6.1. Métricas sobre el conjunto externo de 50 vigas no vistas

Modelo Objetivo R2 MAE

HGBR max_stress 0,978 21,38 MPa
HGBR max_displacement 0,872 8,43 mm
Red neuronal max_stress 0,988 21,89 MPa
Red neuronal max_displacement 0,980 4,09 mm

Los diagramas de correlación confirman que ambos modelos capturan bien las tendencias
globales. En tensión, los dos presentan un ajuste muy similar; la diferencia de MAE es mar-
ginal y dentro del ruido esperado por la propia discretización del problema y la variabilidad
geométrica. En desplazamiento, la red neuronal mantiene la pendiente y la alineación con
y = x a lo largo de todo el rango, mientras que el HGBR muestra mayor dispersión en el
extremo de grandes flechas. Los diagramas de residuales refuerzan esta conclusión: para
HGBR aparecen colas más anchas en los casos con desplazamientos altos; en la red neu-
ronal los residuales se distribuyen de forma más estrecha y aproximadamente centrada, con
heterocedasticidad moderada en tensiones elevadas.

Estos resultados son coherentes con las métricas obtenidas durante el entrenamiento: el
HGBR ya mostraba un rendimiento muy fuerte en la predicción de tensiones y un desempeño
más limitado en desplazamientos cuando no se controlaba cuidadosamente la escala física
de entrada. Tras el preprocesado y la incorporación de rasgos físico informados, la red neuro-
nal aprovechó mejor la información de escala y linealidad local, especialmente para la flecha,
donde el comportamiento suave y continuo favorece a arquitecturas densas con activaciones
no lineales.

Para predicción de tensión máxima, HGBR y red neuronal ofrecen precisión equivalente en
términos prácticos sobre datos no vistos. Para desplazamiento máximo, la red neuronal es
claramente superior en este experimento independiente, con casi la mitad del MAE y un R2

sensiblemente mayor. Con base en ello, una estrategia razonable es:
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1. Emplear la red neuronal como modelo de referencia para desplazamientos;

2. Mantener el HGBR o la propia red neuronal para tensiones, indistintamente, dado su
rendimiento similar;

3. Considerar un enfoque combinado o ensemblado si se desea robustez extra frente a
casos límite, y complementar con estimación de incertidumbre (p. ej., pérdidas cuantíli-
cas en HGB o dropout en inferencia para la red) cuando se trabaje cerca de los bordes
del espacio de diseño.

En todos los casos, la calidad de la predicción seguirá estando condicionada por la cobertura
del dataset en las regiones de mayor flexibilidad y por la correcta aplicación del preprocesado
físico informado que alinea las entradas con las escalas L, EI y su interacción con las cargas.

En conjunto, la validación externa respalda la solidez de los modelos: las métricas son cohe-
rentes con las obtenidas en el conjunto de prueba y el patrón de puntos se alinea con la recta
identidad en ambos objetivos. Con base en estos resultados, se consideran los modelos su-
ficientemente estables para su integración en la interfaz Alabeam y su uso en escenarios
de predicción rápida. Como trabajos futuros, puede reforzarse la cobertura en regiones de
cargas elevadas y longitudes efectivas extremas, e incorporar diagnósticos adicionales de
residuos estratificados por sección y tipo de apoyo.

6.2 Comparación de resultados: caso de estudio real
En este apartado se presenta un análisis comparativo entre las predicciones obtenidas con
la herramienta Alabeam y el análisis numérico realizado con HyperMesh/Optistruct para una
viga de validación adicional, generada desde cero en HyperMesh. El objetivo es evaluar la
precisión de los modelos de aprendizaje frente a una simulación MEF detallada, y discutir
aspectos prácticos como tiempo de ejecución, requisitos de licencia y la curva de aprendizaje
necesaria para cada enfoque.

6.2.1. Descripción del caso de estudio

La viga analizada se muestra en la Figura 6.9 y tiene las siguientes características:

• Longitud: L = 1775 mm.

• Material: aluminio (propiedades empleadas en HyperMesh/OptiStruct según la confi-
guración del modelo).

• Condiciones de contorno: empotrada en el extremo izquierdo y libre en el extremo
derecho (cantiléver).

• Sección: perfil tipo I — dimensiones mostradas en la Figura 6.10 (captura adjunta).

• Carga: carga aplicada en eje Y (hacia abajo) situada a 1579.75 mm desde el extremo
empotrado.
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Figura 6.9. Modelo de la viga utilizada

Figura 6.10. Dimensiones de la sección I empleada en el modelo

6.2.2. Resultados de la simulación FE (HyperMesh / OptiStruct)

La solución obtenida mediante OptiStruct para la configuración descrita arroja los siguientes
valores de referencia:

• Desplazamiento máximo: uFE
máx = 79.29 mm.

• Tensión máxima (Von Mises): σFE
máx = 224.075 MPa.

En la Figura 6.11 se presentan los resultados obtenidos en HyperView, donde la imagen
(a) corresponde al campo de desplazamientos y la imagen (b) muestra la distribución de
tensiones de Von Mises.
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(a) Desplazamientos

(b) Tensiones von Mises

Figura 6.11. Resultados FE: desplazamientos y tensiones para la viga de 1775 mm.

6.3 Resultados de Alabeam
A continuación se presentan los valores predichos por la aplicación Alabeam, basada en el
modelo de red neuronal, para la misma viga analizada mediante el modelo de elementos
finitos en HyperMesh/OptiStruct:

• Desplazamiento máximo (Alabeam): uAB
máx = 82.57 mm

• Tensión máxima (AlaBeam, Von Mises): σAB
máx = 248.32 MPa

6.3.1. Métricas de comparación

Para cuantificar la diferencia entre la simulación FE (HyperMesh/OptiStruct) y la predicción
de Alabeam se emplean las siguientes métricas:

Error absoluto (EA) = |xFE − xAB|

Error relativo (ER) =
|xFE − xAB|

|xFE|
× 100%
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donde x es la magnitud de interés (umáx o σmáx).

En la Tabla 6.2 se muestran los valores de ambos análisis con las muestras de el error obte-
nido entre la simulación hecha por MEF y con Alabeam.

Tabla 6.2. Comparación entre los resultados del análisis FE (HyperMesh/OptiStruct) y la predicción de Alabeam
(modelo de red neuronal) para la viga de validación.

Magnitud FE (HyperMesh) Alabeam Error absoluto Error relativo

Desplazamiento máximo [mm] 79.29 82.57 3.28 4.13%

Tensión máxima (Von Mises) [MPa] 224.08 248.32 24.25 10.82%

La Figura 6.12 presenta un gráfico de barras que permite comparar de forma visual las dife-
rencias entre ambos análisis.

Figura 6.12. Comparación entre MEF (HyperMesh) y Alabeam

6.3.2. Discusión

Los resultados muestran una excelente correlación entre la predicción de Alabeam y el aná-
lisis realizado mediante el modelo de elementos finitos. El error relativo en desplazamiento
máximo es del 4.13 %, mientras que para la tensión máxima alcanza un 10.82 %. Estos va-
lores son plenamente aceptables considerando que el modelo de red neuronal ha sido en-
trenado con datos sintéticos generados bajo una gran variedad de geometrías, materiales y
condiciones de contorno.

Además, Alabeam ofrece la ventaja de obtener resultados en menos de un segundo, sin
necesidad de disponer de licencias de software comercial ni conocimientos avanzados de
modelado FE, lo que supone una alternativa rápida y eficiente para análisis preliminares o
tareas de diseño conceptual.
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6.3.3. Comparativa práctica: tiempo, licencia y curva de aprendizaje

Tiempo

• HyperMesh + OptiStruct: preparación del modelo (creación de la sección I, mallado,
definición de propiedades, materiales, condiciones de contorno y carga, y ejecución)
suele requerir desde varios minutos hasta horas según la complejidad y la pericia del
usuario. La ejecución del solver en un modelo de viga 1D es rápida (segundos), pero
la preparación y postprocesado consumen la mayor parte del tiempo.

• AlaBeam: la predicción es prácticamente instantánea (orden de milisegundos a se-
gundos) una vez introducidos los parámetros en la GUI y aplicado el preprocesado
automático.

Licencia

• HyperMesh/OptiStruct: software comercial con coste de licencia, típicamente usado
por empresas de CAE. Implica inversión económica y, en muchos casos, acceso insti-
tucional.

• AlaBeam: herramienta propia basada en modelos entrenados; su despliegue (por ejem-
plo en Streamlit Cloud) puede ser gratuito o con coste reducido. Sin embargo, la validez
de las predicciones depende del dataset y no sustituye la necesidad del software CAE
para análisis de alta fidelidad.

Conocimientos requeridos

• HyperMesh/OptiStruct: requiere conocimientos en MEF, preparación de mallas, elec-
ción de elementos y criterios de convergencia; además del manejo del software (Hy-
perMesh/HyperView) y de la interpretación correcta de resultados (tensiones, factores
de seguridad, etc.).

• AlaBeam: orientado a usuarios con conocimientos de ingeniería básica que deseen
estimaciones rápidas. Sin embargo, interpretar resultados críticos (p. ej. tensiones cer-
canas al límite elástico) aún requiere juicio técnico.

6.3.4. Conclusión del caso de estudio

El caso de validación realizado demuestra la capacidad de la herramienta Alabeam para re-
producir con elevada precisión los resultados de un análisis estructural mediante elementos
finitos. A pesar de tratarse de un modelo simplificado basado en datos sintéticos, las discre-
pancias respecto al resultado de referencia obtenido con HyperMesh/OptiStruct se mantienen
por debajo del 11 % en ambos parámetros analizados, lo que evidencia la robustez del enfo-
que propuesto.

Además, la predicción mediante Alabeam se obtiene de forma instantánea y sin necesidad
de disponer de licencias comerciales ni de conocimientos avanzados en modelado FEM.
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Por contra partida, un análisis con HyperMesh requiere una configuración detallada del mo-
delo, tiempos de ejecución mucho mayores y un coste computacional y económico significa-
tivamente superior.

En conclusión, este caso de estudio ilustra el potencial de las técnicas de aprendizaje automá-
tico para agilizar el análisis estructural, abriendo la puerta a su aplicación en fases tempranas
de diseño, optimización o evaluación de configuraciones paramétricas sin depender de un
software de simulación convencional.
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Capítulo 7. CONCLUSIONES
7.1 Conclusiones del trabajo
El objetivo principal de este trabajo fue demostrar la viabilidad de emplear técnicas de Machi-
ne Learning para aproximar resultados de análisis estructural obtenidos por el Método de los
Elementos Finitos. Para ello se diseñó y validó un flujo completo que integra generación de
datos por simulación (HyperMesh + OptiStruct), extracción automática de resultados median-
te PyNastran, un preprocesado con feature engineering físico-informado y el entrenamiento
de modelos supervisados (HGBR y redes neuronales).

Los principales resultados y conclusiones son los siguientes:

• Generación y datos. Se generó un conjunto sintético de 4058 modelos mediante si-
mulaciones MEF, empleando una partición de datos 70%/30% (2 839 casos para en-
trenamiento y 1 218 para prueba). El pipeline automático garantiza trazabilidad y re-
producibilidad entre la definición geométrica (HyperMesh), la ejecución (OptiStruct) y la
extracción de magnitudes de interés (desplazamiento y tensión máximos).

• Preprocesado. El feature engineering aplicado (ecuaciones de vigas, variables geomé-
tricas y codificaciones categóricas) mejora la representatividad física de las entradas y
facilita el aprendizaje, reduciendo la necesidad de arquitectura excesivamente comple-
ja.

• Rendimiento de HGBR. El modelo Histogram Gradient Boosting Regressor mostró un
comportamiento robusto y competitivo:

• Desplazamiento máximo: R2 = 0.843, MAE = 11.6189 mm, MedAE = 2.6783 mm.

• Tensión máxima: R2 = 0.960, MAE = 36.7916 MPa, MedAE = 14.1722 MPa.

Estos valores muestran que, con un conjunto de features bien diseñado, los métodos
de boosting son capaces de capturar las no linealidades relevantes con alta estabilidad.

• Rendimiento de las redes neuronales. Se entrenaron varias arquitecturas y se com-
pararon con HGBR:

• Arquitectura ultimate para desplazamiento: R2 = 0.8686, MAE = 10.2020 mm,
MedAE = 1.9112 mm, RMSE = 26.4861 mm, MAPE = 113.82% (n_test =
1218).

• Arquitectura simple para tensión: R2 = 0.92897, MAE = 54.4107 MPa, MedAE =

25.9554 MPa, RMSE = 107.2986 MPa, MAPE = 26.21% (n_test = 1218).

En resumen: la red neuronal ultimate supera a HGBR en la predicción de desplaza-
mientos (mejores R2, MAE y MedAE), mientras que para tensiones la arquitectura más
simple ofreció el mejor compromiso entre ajuste y control de errores extremos (RMSE
competitivo).

88



Predicción Inteligente del Comportamiento Mecánico de
Vigas usando Machine Learning y Análisis por Elementos
Finitos

Daniel López López

• Selección final de modelos. Atendiendo tanto a métricas como al análisis de disper-
sión y residuos, se adoptaron las siguientes decisiones:

• Desplazamiento máximo: modelo seleccionado — red neuronal ultimate.

• Tensión máxima: modelo seleccionado — red neuronal simple (por su mejor con-
trol de errores extremos en comparación con arquitecturas más profundas).

• Despliegue y usabilidad. La aplicación Alabeam fue implementada en Streamlit y des-
plegada en la capa gratuita de Streamlit Cloud (URL pública). Esto facilita la validación y
difusión, aunque el plan gratuito impone limitaciones operativas (instancias que entran
en reposo tras inactividad).

Limitaciones principales

• Los datos son sintéticos: aunque permiten explorar un dominio amplio, la validez fuera
del espacio muestreado (extrapolación) es limitada hasta contar con validación experi-
mental.

• Criterios como el MAPE pueden resultar engañosos cuando existen valores reales
cercanos a cero; por ello se ha priorizado R2, MAE, MedAE y RMSE en la evaluación.

• El estudio se ha acotado a vigas 2D/simple, por lo que la aplicabilidad a placas, sólidos
o ensamblajes requiere trabajo adicional.

• No se han incluido (en este trabajo) estimaciones sistemáticas de incertidumbre en las
predicciones (intervalos de confianza), imprescindible para usos industriales críticos.

Aportaciones y valor añadido

• Demostración práctica y reproducible de un flujo completo: desde la generación auto-
mática de modelos MEF hasta el despliegue de una aplicación interactiva con modelos
predictivos.

• Comparativa cuantitativa entre un método de boosting (HGBR) y redes neuronales, con
justificación de selección por objetivo.

• Implementación de un preprocesado con base física que mejora la interpretabilidad y
la estabilidad del aprendizaje.

• Código y modelos empaquetados para facilitar su reutilización y ampliación.

En conclusión, este trabajo demuestra que el Machine Learning puede ser una herramienta
eficaz y eficiente para acelerar el análisis estructural basado en MEF, ofreciendo predicciones
inmediatas con una precisión adecuada para muchas tareas de diseño exploratorio y cribado.
Las limitaciones señaladas delimitan un camino claro de mejora que permitirá, con la incorpo-
ración de validación experimental y mayor complejidad en los datos, trasladar la metodología
a escenarios industriales reales.
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7.2 Conclusiones personales
En este trabajo he logrado demostrar la viabilidad de integrar simulación numérica y aprendi-
zaje automático para la predicción rápida del comportamiento estructural de vigas. El proceso
me ha permitido familiarizarme con la generación automatizada de modelos MEF (HyperMesh
/ OptiStruct), la extracción de resultados con PyNastran y el entrenamiento de modelos pre-
dictivos (HGBR y redes neuronales). Personalmente, el mayor aprendizaje ha sido compren-
der la importancia del feature engineering físico-informado para obtener modelos robustos y
generalizables. Este proyecto me ha proporcionado competencias prácticas y metodológicas
que pienso aplicar en futuros proyectos.
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Capítulo 8. FUTURAS LÍNEAS DE TRABAJO
El presente trabajo ha demostrado la viabilidad de aplicar técnicas de Machine Learning al
análisis estructural, utilizando datos generados mediante simulaciones por el Método de los
Elementos Finitos (MEF). A pesar de que el estudio se ha centrado en un caso muy con-
creto el comportamiento de vigas 2D bajo distintas condiciones geométricas, materiales y de
contorno, los resultados obtenidos abren múltiples vías de desarrollo y mejora, tanto a nivel
metodológico como de aplicación práctica.

8.1 Ampliación del dominio estructural
Una primera línea de trabajo consiste en extender el enfoque actual hacia otros tipos de
elementos estructurales más complejos:

• Vigas tridimensionales y pórticos: incorporar grados de libertad en las tres direcciones
espaciales, así como los efectos de flexión, torsión y cortante combinados.

• Placas y láminas: emplear elementos de tipo CQUAD4 o CTRIA3 para modelar estructuras
bidimensionales y estudiar tensiones en membrana y flexión.

• Sólidos 3D: extender el entrenamiento a modelos volumétricos, permitiendo predecir
campos de tensiones o desplazamientos locales en piezas reales.

8.2 Incremento de la complejidad del modelo de datos
El dataset actual se ha generado mediante modelos sintéticos con hipótesis lineales y condi-
ciones de contorno simples. Futuros desarrollos podrían considerar:

• Materiales no lineales (plásticos, compuestos o viscoelásticos).

• Cargas dinámicas o térmicas, explorando el comportamiento temporal de la estructura.

• Interacciones entre elementos, permitiendo representar estructuras completas y en-
samblajes.

8.3 Mejoras en el modelado y entrenamiento
En el ámbito del aprendizaje automático, existen múltiples vías de mejora:

• Optimización de hiperparámetros mediante grid search o algoritmos bayesianos.

• Modelos híbridos Físico–Informados (Physics-Informed Neural Networks, PINNs) que
integren directamente las ecuaciones del MEF en la función de pérdida.

• Redes neuronales convolucionales o gráficas (GNNs), capaces de aprender directa-
mente de la malla de elementos finitos sin necesidad de un preprocesado manual.

• Aumento del dataset mediante técnicas de generación automática y validación cruzada
más exhaustiva.
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8.4 Despliegue y usabilidad de la herramienta
La aplicación Alabeam, desarrollada en Streamlit, representa un primer paso hacia la integra-
ción de modelos predictivos en herramientas accesibles para ingenieros. En el futuro podrían
implementarse:

• Un entorno web más robusto, desplegado en servidor propio o en contenedor Docker,
que evite las limitaciones de la versión gratuita.

• Un módulo de exportación automática a software CAD/CAE.

• Una interfaz más avanzada, que permita personalizar geometrías, condiciones de con-
torno y materiales, además de mostrar resultados visuales del campo de desplazamien-
tos o tensiones.

8.5 Aplicación industrial y validación experimental
Finalmente, sería deseable realizar una validación experimental o comparativa frente a resul-
tados reales o modelos de alta fidelidad, evaluando la precisión de los modelos de aprendizaje
automático en contextos industriales. Esta fase permitiría medir el impacto real de la meto-
dología propuesta y sentar las bases para su incorporación en el flujo de trabajo de diseño
estructural asistido por inteligencia artificial.

Conclusión
En conjunto, las líneas expuestas apuntan a la consolidación de un paradigma emergente:
la fusión entre el análisis numérico tradicional y las técnicas de aprendizaje automático. La
capacidad de los modelos de Machine Learning para aproximar comportamientos estructura-
les complejos de manera instantánea constituye una herramienta de enorme potencial para
acelerar procesos de simulación, optimización y diseño en ingeniería estructural.
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Apéndice A. Presupuesto y costes estimados
Criterios de estimación. El precio del equipo se ha estimado a partir del coste de mercado
de un portátil con especificaciones equivalentes (Intel Core i9, 32 GB de RAM y SSD de 1 TB),
tomando como referencia una configuración media de gama alta y redondeando a una cifra
conservadora de 2 200 C. Las licencias de Altair HyperMesh/OptiStruct se han considerado
a coste cero por tratarse de licencias académicas de estudiante. Las horas de ingeniería
(120 h) se han calculado por descomposición de tareas:

• Definición del espacio de diseño y scripting para generación automática de modelos.

• Preparación y lanzamiento de simulaciones en OptiStruct.

• Postprocesado con PyNastran y depuración de datos.

• Entrenamiento, validación iterativa y análisis de errores.

• Integración y pruebas de la interfaz AlaBeam.

La imputación económica de las horas de ingeniería se han valorado con una tarifa orientati-
va de 35 C/h. Se considera una incertidumbre razonable (±15−20%) asociada a variaciones
de mercado. Se contempla la presentación del trabajo en un congreso académico, incluyendo
inscripción, viaje, alojamiento y dietas. El importe mostrado (875 C) es orientativo y represen-
ta un evento de ámbito europeo. Esta partida queda sujeta a disponibilidad de financiación
institucional y puede reducirse en caso de colaboración de algún departamento.

La siguiente tabla resume los costes estimados del desarrollo del proyecto.

Tabla A.1. Presupuesto y costes estimados. La asistencia a congreso se contempla como partida opcional

Concepto Detalle Coste

Portátil (equipo de cómputo) Intel Core i9, 32 GB RAM, SSD 1 TB 2.200 C
Licencia HyperMesh (estudiante) Uso académico 0 C
Python + librerías sk-learn, TF, PyNastran, Streamlit 0 C
Horas de cálculo ∼24 h (local) n/a
Horas de ingeniería Desarrollo y validación (120 h × 35 C/h) 4.200 C

Asistencia a congreso (opcional) Inscripción, viaje, alojamiento y dietas 875 C

Total 7.275 C

Notas.

• Si el equipo ya estaba disponible, el coste puede imputarse como amortización propor-
cional a la duración del TFM, en cuyo caso el importe directo sería menor.

• No se imputan costes energéticos al tratarse de ejecución local en entorno académico.
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Apéndice B. Repositorio y código fuente
Este apéndice recopila la organización del repositorio y las rutas de los códigos (scripts)
principales para las herramientas diseñadas para el desarrollo de los modelos y la interfaz
gráfica Alabeam.

B.1 Herramientas para generar los modelos
Este repositorio recoge todos los scripts (herramientas) que se han creado para realizar el
entrenamiento de los modelos, desde la generación del dataset hasta la predicción de los
mismos. El repositorio se puede encontrar en la referencia [27]

1. Generador_Modelos/
generador_HM.tcl
generador_casos.py

2. Preprocessing/
Extraccion_OP2.py
preprocessing.py

3.Train/
Dataset_V01_total.csv
HGBR_training.py
NN_training.py

4. Predict/
HGBR_predict.py
NN_predict.py

config.py
requirements.txt

Notas de uso

• Sistema de unidades mm, N y MPa en todos los scripts.

• Los scripts que generan datos fijan una semilla aleatoria fijaga en config.py

Referencia rápida a scripts

En la Tabla B.1 se muestran los ficheros del repositorio y la descripción de cada uno de ellos.

Tabla B.1. Descripción del código del repositorio

ruta propósito

1.Generador_Modelos/generador_casos.py genera el CSV maestro de combinaciones
1.Generador_Modelos/generador_HM.tcl crea modelos .hm y exporta .fem a partir del CSV
2.Preprocessing/Extraccion_OP2.py lee OP2 y agrega desplazamiento y tensión máximos
2.Preprocessing/preprocessing.py cálculo de rasgos físico-informados y limpieza
3.Train/HGBR_training.py entrenamiento y validación del modelo HGBR
3.Train/NN_training.py entrenamiento y validación de la red neuronal
4.Predict/HGBR_predict.py predicción con el modelo HGBR final
4.Predict/NN_predict.py predicción con la red neuronal final
config.py constantes compartidas y utilidades
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B.2 Repositorio de la aplicación Alabeam
A continuación se documenta la estructura y contenidos del repositorio de la aplicación Ala-
Beam, la cual integra la interfaz gráfica desarrollada en Streamlit con los modelos de pre-
dicción (HGBR y red neuronal) y las utilidades de preprocesado. Este repositorio se puede
encontrar en la referencia [29]

Estructura del repositorio

Alabeam/
Alabeam_logo.png
README.md
alabeam.py % App principal (Streamlit)
config.py % Configuración general
models/

model_max_displacement_HGB.joblib
model_max_stress_HGB.joblib

models_neural/
feature_columns_neuralnet.csv
model_max_displacement_neuralnet.keras
model_max_stress_neuralnet.keras
scaler_displacement_neuralnet.joblib
scaler_stress_neuralnet.joblib

preprocessing.py % Preprocesado
requirements.txt

Notas generales de uso

• Todos los scripts y modelos trabajan con el sistema de unidades mm, N y MPa.

• La semilla aleatoria para generación reproducible de datos está definida en config.py.

• Los modelos binarios se encuentran en models/ (HGBR) y models_neural/ (red neu-
ronal y escaladores).

• Para evitar problemas de compatibilidad, se recomienda crear un entorno virtual (conda
o venv) e instalar las dependencias con pip install -r requirements.txt.

Instrucciones de ejecución rápida

1. Crear un entorno e instalar dependencias.

2. Ejecutar la aplicación localmente:

streamlit run alabeam.py

3. Acceder en el navegador a http://localhost:8501 (o a la URL de Streamlit Cloud si
está desplegado).
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Referencia rápida a scripts y ficheros

Tabla B.2. Índice rápido de ficheros principales del repositorio Alabeam

Ruta / fichero Propósito / descripción

alabeam.py Script principal de la interfaz gráfica (Streamlit). Gestiona la
carga de modelos, el preprocesado de entradas y la
visualización de resultados.

config.py Archivo de configuración con constantes globales (unidades,
semilla, rutas a modelos, nombres de columnas, parámetros
de normalización).

preprocessing.py Implementa las transformaciones de feature engineering
usadas tanto en entrenamiento como en predicción
(escalares, variables derivadas de la geometría de vigas,
encoding de secciones/materiales).

models/model_max_displacement_HGB.jo
blib

Modelo HGBR entrenado para max_displacement.

models/model_max_stress_HGB.joblib Modelo HGBR entrenado para max_stress.
models_neural/feature_columns_neural
net.csv

Lista de columnas/orden que requiere la red neuronal para
las entradas.

models_neural/model_max_displacement
_neuralnet.keras

Red neuronal entrenada para desplazamiento máximo
(modelo Keras).

models_neural/model_max_stress_neura
lnet.keras

Red neuronal entrenada para tensión máxima (modelo
Keras).

models_neural/scaler_*.joblib Objetos scaler usados para normalizar/denormalizar
entradas y salidas en la predicción.

requirements.txt Dependencias del proyecto (Streamlit, scikit-learn, joblib,
tensorflow/keras, pandas, numpy, etc.).

Consideraciones de reproducibilidad y despliegue

• Mantener sincronizados feature_columns_neuralnet.csv y el orden de columnas
esperado por los modelos. Cualquier cambio en el preprocesado debe versionarse con-
juntamente con los modelos.

• Para despliegue público se ha usado Streamlit Cloud (plan gratuito). En este entorno la
aplicación puede entrar en reposo tras periodos de inactividad; consulte la sección de
despliegue del TFM para más detalles.

• Incluir en el repositorio un ejemplo mínimo de entrada (CSV de ejemplo) y tests unitarios
básicos para las transformaciones críticas.
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Apéndice C. Estructura de un fichero .fem (Op-
tistruct & HyperMesh)
Este apéndice describe la estructura y las principales cartas (bulk data entries) de un modelo
de viga resuelto con OptiStruct a partir de un fichero .fem exportado desde HyperMesh. Se
usa como referencia el caso Beam_TUBE_1000mm_simple_clamped_Titanium.fem. La infor-
mación mostrada en este apéndice ha sido extraída de la documentación oficial de Altair (ver
referencia [22]).

Estructura general del .fem

Un fichero .fem de OptiStruct sigue la organización clásica tipo NASTRAN:

• Case Control: define el tipo de análisis, casos de carga (subcase) y salidas.

• Bulk Data: contiene la malla (nodos, elementos), propiedades, materiales, cargas y
restricciones.

La información de los modelos se define mediante tarjetas (cards) preestablecidas por OptiS-
truct, las cuales permiten describir una amplia variedad de configuraciones y tipos de análisis.

En el modelo analizado, el Case Control es:

SUBCASE 1
LABEL Static_Analysis
ANALYSIS STATICS
SPC = 1
LOAD = 2
DISPLACEMENT(OUTPUT2,) = ALL
SPCFORCE(,OUTPUT2,,,) = ALL
STRESS(OP2,ALL) = ALL

Esto define un análisis estático (SUBCASE 1) con:

• Conjunto de restricciones SPC=1.

• Conjunto de cargas LOAD=2.

• Solicitud de salidas: desplazamientos, fuerzas de SPC y tensiones a ficheros binarios
OP2/OUTPUT2.

Malla: nodos (GRID) y elementos (CBEAM)

La malla es unidimensional a lo largo del eje X, con 101 nodos (0 mm a 1000 mm) que
discretizan la viga en 100 elementos:

GRID 1 0.0 0.0 0.0
...
GRID 101 1000.0 0.0 0.0
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Los elementos empleados son CBEAM (elementos viga con sección y propiedad asociadas).
Cada tarjeta CBEAM referencia una propiedad (PID), dos nodos extremos y un vector de orien-
tación local (v) que fija el eje local de la sección:

CBEAM 1 1 1 20.0 0.0 1.0
...
CBEAM 100 1 100 1010.0 0.0 1.0

Notas: (1) PID=1 vincula cada elemento a la propiedad de viga (sección y material). (2) El
vector de orientación no necesita ser unitario; sólo define la dirección del eje local (p. ej.,
hacia Z) para rotar la sección.

Propiedad de viga: PBEAML (sección tubular)

La propiedad de los elementos CBEAM se define con PBEAML usando una sección TUBE (tubo
circular), indicando geometría:

PBEAML 1 1 TUBE +
+ 73.56 60.27 0.0

donde PID=1 y MID=1 (material asociado). Para TUBE, los parámetros corresponden a radio
exterior y radio interior (en mm), por lo que aquí se modela un tubo con Dext ≈ 73.56 mm y
Dint ≈ 60.27 mm.

Material: MAT1 (isótropo lineal)

El material isótropo se define con MAT1 (módulo elástico E, coeficiente de Poisson ν, densidad
ρ, etc.):

MAT1 1 112000.0 0.32 4.5-6

En el caso de esta viga se emplea titanio cuyas propiedades son: E ≈ 112 GPa, ν = 0.32,
ρ ≈ 4.5 × 10−6 kg/mm3 (densidad ∼ 4500 kg/m3). Nota de unidades: el modelo emplea
millímetros (mm) y Newton (N), por lo que E se expresa en MPa.

Condiciones de contorno: SPC (simple y empotrado)

Las restricciones SPC fijan grados de libertad (DOF) en nodos específicos. En el modelo:

SPC 1 1 123 0.0
SPC 1 101 123456 0.0

• En el nodo 1 se fijan traslaciones (1, 2, 3) y se dejan libres las rotaciones (4, 5, 6) repre-
sentando un apoyo simple.

• En el nodo 101 se fijan todos los DOF (1–6) reflejando un empotramiento.

Cargas: LOAD/MOMENT

El caso de carga referencia LOAD=2, que agrupa las tarjetas de carga del bulk data. En este
ejemplo se aplica un momento nodal:
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MOMENT 2 51 0 1.0 0.0 0.0 -3.537+7

Este momento actúa en el nodo 51 (aproximadamente en el centro de la viga), con magnitud y
dirección dadas por los campos de la tarjeta (momento concentrado en un sistema cartesiano
global, CID=0). Esta carga produce un estado de flexión representativo para la validación.

Resumen del modelo empleado

• Longitud: 1000 mm (101 nodos, 100 elementos CBEAM).

• Sección: tubular (PBEAML/TUBE) con rext = 73.56 mm y rint = 60.27 mm.

• Material: MAT1 (Titanio) con E = 112 GPa, ν = 0.32, ρ = 4.5× 10−6 kg/mm3.

• Apoyos: nodo 1 → apoyo simple (123); nodo 101 → empotramiento (123456).

• Carga: MOMENT en nodo 51, agrupado en LOAD=2.

• Análisis: estático lineal (ANALYSIS STATICS), con salidas de desplazamientos y ten-
siones.

Buenas prácticas al generar .fem desde HyperMesh

• Verificar unidades coherentes (mm–N–MPa) para GRID, PBEAML, MAT1 y cargas.

• Asegurar una orientación de viga (CBEAM vector) estable: evita alinearla con el eje de la
viga para no degenerar el sistema local.

• Comprobar que PID y MID están correctamente enlazados (CBEAM→ PBEAML→ MAT1).

• Documentar casos de carga y SPC con identificadores únicos, especialmente cuando
se generen lotes sintéticos.

• Solicitar salidas (DISPLACEMENT, STRESS, etc.) acordes con el postproceso (por ejemplo,
extracción con PyNastran).
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