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RESUMEN

Este trabajo presenta el desarrollo de modelos de aprendizaje automatico para complementar
analisis mediante elementos finitos (MEF). Se generan datos sintéticos a partir de modelos de
vigas 1D en HyperMesh, obteniendo como resultados el desplazamiento maximo y la tension
maxima de Von Mises. Estos resultados se utilizan para entrenar modelos de aprendizaje
automatico capaces de realizar predicciones sin necesidad de recurrir al MEF.

Se entrenaron dos modelos para evaluar sus fortalezas y limitaciones: un Gradient Boosting
y una red neuronal. El documento detalla todo el proceso, desde la generacion de datos y
el preprocesamiento hasta la optimizacién de hiperparametros. Se destaca la importancia de
la ingenieria de caracteristicas (feature engineering) para lograr modelos con métricas de
desempeno adecuadas. Los modelos desarrollados permiten predecir el comportamiento de
vigas con distintas longitudes, materiales, tipos de seccién y condiciones de contorno.

Finalmente, se implementé una interfaz gréafica simplificada, denominada Alabeam, que per-
mite realizar predicciones sin necesidad de conocimientos avanzados en calculo estructural
o MEF. Esta herramienta demuestra el potencial del aprendizaje automatico en fases de di-
sefno, donde se requieren multiples iteraciones de manera eficiente siendo capaz de ofrecer
resultados en menos de un segundo.
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ABSTRACT

This thesis presents the development of machine learning models to complement finite ele-
ment analysis (FEA). Synthetic datasets were generated from 1D beam models in Hyper-
Mesh, obtaining maximum displacement and maximum Von Mises stress as outputs. These
results were subsequently used to train machine learning models capable of making predic-
tions without performing FEA.

Two models were trained to assess their respective strengths and limitations: a Gradient Boos-
ting model and a neural network. The work details the entire workflow, from data generation
and preprocessing to hyperparameter optimization, emphasizing the crucial role of feature en-
gineering in achieving models with satisfactory performance metrics. The developed models
enable the prediction of beam behavior for various lengths, materials, cross-sectional types,
and boundary conditions.

Finally, a simplified graphical user interface, named Alabeam, was implemented, allowing
users to make predictions without advanced knowledge of structural analysis or FEA. This
tool demonstrates the potential of machine learning in design phases, where multiple itera-
tions are required efficiently, providing results in less than a second.

Keywords: Finite Element Method (FEM), Structural Analysis, Machine Learning, Neural Net-
works, Gradient Boosting, Surrogate Modeling, PyNastran, OptiStruct, Streamlit, Structural
Mechanics.
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Simbolos y abreviaturas

Simbolo Nombre Unidad

L Longitud de la viga mm

Text Radio exterior mm

Tint Radio interior mm

t Espesor mm

b Base de la seccion mm

h Altura de la seccién mm

A Area de seccién mm?

I Momento de inercia mm?

J Momento polar de inercia mm?*

K Factor de longitud efectiva -

fe Matriz de cargas MEF N

K. Matriz de rigidez MEF N/mm , N/rad, N-mm/rad
de Vector desplazamiento MEF mm/rad

w Modulo resistente mm?3

E Modulo de elastico MPa (N/mm?)

p Densidad kg/mms3

v Coeficiente de Poisson -

p Densidad kg/mms3

F Fuerza puntual N

M Momento puntual N-mm

N(z) Esfuerzo axial N

w Carga distribuida N/mm

U, W Desplazamiento mm

w(x) Desplazamiento a lo largo de x mm

Umax Desplazamiento (displacement) maximo  mm

€ Deformacién -

0 Rotacion rad

o Tensiodn (stress) MPa

MAE Mean Absolute Error mismas unidades del objetivo
MedAE Median Absolute Error mismas unidades del objetivo
RMSE Root Mean Squared Error mismas unidades del objetivo
MAPE Mean Absolute Percentage Error -

R? Coeficiente de determinacion -

Tabla 1. Glosario de simbolos y variables utilizadas en el proyecto.
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Capitulo 1. INTRODUCCION

En el ambito de la ingenieria estructural, la prediccién del comportamiento de componentes
sometidos a cargas constituye una tarea esencial para garantizar la seguridad, la funcionali-
dady la eficiencia de los disefios. Tradicionalmente, estos analisis se han abordado mediante
métodos clasicos, como la teoria de vigas, o bien mediante simulaciones numéricas avanza-
das, siendo el Método de los Elementos Finitos (MEF, en inglés Finite Element Method, FEM)
la técnica mas extendida en la practica profesional. Si bien el MEF proporciona una elevada
precision y versatilidad, también implica un alto coste computacional y temporal, asi como
la necesidad de conocimientos especializados para cada nuevo caso de carga, geometria o
material. Estas limitaciones se hacen especialmente evidentes en fases tempranas de disefio,
donde resulta necesario evaluar multiples configuraciones estructurales de forma agil [1].

En los ultimos anos, el auge del aprendizaje automatico (machine learning, ML) y el analisis
de datos ha supuesto una transformacién profunda en numerosas disciplinas de la ingenieria,
gracias a su capacidad para identificar y modelar patrones complejos a partir de grandes vo-
limenes de datos experimentales o simulados [2]. A diferencia de los métodos tradicionales,
el ML no requiere formular ni resolver de manera explicita las ecuaciones diferenciales que
describen el comportamiento fisico de un sistema, sino que construye modelos predictivos
basados en la experiencia contenida en los datos. Esto permite obtener estimaciones rapidas
y, en muchos casos, con una precisiébn comparable a la de métodos numéricos convenciona-
les, pero con un coste computacional mucho menor.

La combinacion de técnicas clasicas como el MEF con métodos basados en ML ha dado lugar
a enfoques hibridos FEM—ML, que ya se han explorado en campos como la ingenieria civil y
aeroespacial, mostrando un gran potencial para estimar el comportamiento mecanico de es-
tructuras con gran eficiencia. Gracias a estas ventajas, el aprendizaje automatico se plantea
como un recurso complementario e incluso acelerador de los métodos clasicos de simula-
cion. En el presente trabajo se explorara esta sinergia, analizando cémo el ML puede apoyar
el andlisis estructural y facilitar predicciones eficientes del comportamiento de componentes
estructurales sometidos a distintas condiciones de carga.

Este proyecto propone el desarrollo de una herramienta que combine técnicas de aprendizaje
automatico con analisis estructural clasico, con el objetivo de predecir de forma automatica
y eficiente los principales resultados de interés en el estudio de vigas: la tensién maxima
(Von Mises) y el desplazamiento maximo. Para ello, se utilizaran datos generados a partir
de modelos MEF creados automaticamente en HyperMesh y resueltos mediante OptiStruct,
abarcando una amplia variedad de combinaciones geométricas, materiales, condiciones de
contorno y cargas.
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Con el fin de controlar la complejidad del problema y facilitar el entrenamiento de los modelos,
se ha optado por acotar el estudio a vigas bidimensionales modeladas como elementos tipo
viga (1D), con distintas secciones, materiales y esquemas de carga. Este enfoque permite
evaluar con precision la aplicabilidad del aprendizaje automatico en problemas estructurales,
sin perder generalidad en cuanto a los principios fundamentales de la mecanica estructural.

Ademas del desarrollo del modelo predictivo, el proyecto incluye el disefio de una interfaz
grafica interactiva, que permita a cualquier usuario introducir las condiciones de disefio y ob-
tener resultados de forma rapida e intuitiva. Como valor anadido, se incorporan funciones
de recomendacion inteligente orientadas a la optimizacion estructural: por ejemplo, sugeren-
cias de materiales mas ligeros o econémicos que mantengan los requisitos de resistencia, o
propuestas de modificaciones geométricas en la seccion.

En conjunto, este trabajo tiene un doble objetivo: por un lado, demostrar la viabilidad y utilidad
del aprendizaje automdtico como herramienta complementaria al andlisis estructural clésico;
y por otro, desarrollar un software practico, denominado Alabeam, que actue como asistente
inteligente en el disefio y evaluacién de vigas.

1.1 Planteamiento

El presente proyecto se fundamenta en la necesidad de agilizar el analisis estructural en fases
de disefio, donde resulta imprescindible evaluar multiples alternativas en plazos reducidos. Si
bien el MEF es la referencia por su precision y fiabilidad, su elevado coste computacional y
la exigencia de conocimiento especializado limitan su aplicacién en procesos iterativos y en
exploraciones de disefio amplias.

En este marco, el aprendizaje automatico ofrece una oportunidad para acelerar dichos ana-
lisis, al permitir la construccién de modelos predictivos capaces de estimar parametros es-
tructurales clave con rapidez una vez entrenados. En este proyecto se propone el desarrollo
de un modelo de aprendizaje automatico que, aprovechando la capacidad predictiva de estas
técnicas, estime con precision la tensién y el desplazamiento méaximos de vigas a partir de
sus caracteristicas geométricas, materiales y de carga. Para ello, se empleara un conjunto de
datos generado mediante simulaciones MEF automatizadas, garantizando asi que el modelo
aprenda sobre una base sélida y representativa.

Adicionalmente, se plantea la implementacion de una interfaz gréfica orientada a facilitar la
interaccion con el sistema, de modo que los usuarios puedan introducir las condiciones de
disefo de manera sencilla y obtener predicciones inmediatas sin necesidad de conocimien-
tos avanzados en simulacién. La herramienta resultante, denominada Alabeam, se concibe
como un asistente inteligente destinado a apoyar el proceso de disefio estructural de vigas,
proporcionando resultados rapidos, accesibles y eficientes.
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1.2 Objetivos

El presente proyecto tiene como finalidad desarrollar una herramienta inteligente que combine
técnicas de aprendizaje automatico con analisis estructural clasico, para ofrecer predicciones
fiables y eficientes del comportamiento de vigas bajo diversas condiciones de carga, geome-
tria, material y apoyo.

1.2.1. Objetivo general

Disenar e implementar una soluciéon basada en aprendizaje automatico capaz de predecir de
forma precisa y eficiente las deformaciones y tensiones en vigas bidimensionales, utilizando
datos generados mediante simulaciones por elementos finitos (MEF). Asimismo, integrar es-
ta solucién en una herramienta interactiva que proporcione recomendaciones estructurales
orientadas a la optimizacion del disefio.

1.2.2. Objetivos especificos

» Automatizar la generacion de modelos estructurales de vigas mediante scripts en TCL
para HyperMesh, permitiendo crear configuraciones variadas en funcién de parametros
como longitud, tipo de seccidn, material, apoyos y esquema de cargas.

» Desarrollar un script en Python para generar combinaciones estructurales y cargas
aleatorias, exportarlas a un archivo CSV y facilitar asi generaciéon de los modelos con
TCL.

* Ejecutar los modelos MEF en OptiStruct de forma masiva (batch) para simular aproxi-
madamente 4000 configuraciones distintas, obteniendo los resultados en archivos de
salida estructurados (.op2).

« Utilizar la libreria PyNastran para extraer de forma automatizada los resultados clave
de las simulaciones: desplazamiento maximo y tension maxima (Von Mises).

 Construir un conjunto de datos estructurado combinando parametros de entrada y re-
sultados MEF, apto para el entrenamiento de modelos de regresidn supervisada.

» Entrenar y comparar distintos modelos de aprendizaje automatico, como LightGBM
(Gradient Boosting) y redes neuronales artificiales.

« Evaluar el rendimiento de los modelos mediante métricas como MAE, RMSE y R?, y
analizar su precision en la estimacion de variables estructurales frente a las soluciones
MEF.

 Implementar una aplicacién interactiva con Streamlit (Alabeam), que permita introducir
condiciones de disefo y obtener predicciones de forma rapida e intuitiva, con posibilidad
de comparar resultados entre modelos.

* Incorporar un sistema de recomendaciones inteligentes que sugiera materiales alterna-
tivos o modificaciones en la seccién de la viga para mejorar el disefio desde un punto
de vista estructural, econémico o funcional.
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1.3 Beneficios del proyecto

El desarrollo de este proyecto aporta una serie de beneficios significativos tanto desde el pun-
to de vista técnico como practico, con un especial énfasis en su aplicabilidad en el &mbito del
disefo estructural asistido por inteligencia artificial. A continuacién, se detallan las principales
ventajas que ofrece la herramienta desarrollada:

» Reduccion del tiempo de analisis: permite obtener estimaciones fiables del com-
portamiento estructural sin necesidad de realizar simulaciones por elementos finitos
completas para cada caso, lo que acelera el proceso de disefio y validacion.

» Optimizacion estructural automatizada: incorpora recomendaciones inteligentes que
sugieren configuraciones alternativas (materiales, secciones, etc.) manteniendo la se-
guridad estructural, con el objetivo de reducir el peso o el coste del componente.

» Apoyo a la toma de decisiones técnicas: la herramienta no solo ofrece predicciones
numéricas, sino que proporciona sugerencias basadas en criterios ingenieriles y de
fabricacion, facilitando decisiones mas informadas durante las fases iniciales del disefio.

» Aplicabilidad en entornos industriales: Alabeam es especialmente Util en sectores
como la ingenieria civil, la automocién, la aerondutica o el disefio de estructuras me-
talicas, donde los analisis estructurales son frecuentes y el ahorro de tiempo resulta
critico.

+ Valor académico y formativo: el proyecto puede servir como recurso didactico para
estudiantes y docentes, facilitando la comprension del comportamiento estructural y del
impacto de los parametros de disefio, a la vez que introduce conceptos de inteligencia
artificial aplicada a la ingenieria.

« Escalabilidad y adaptabilidad: gracias a su arquitectura modular y su interfaz acce-
sible, la herramienta es facilmente ampliable a otros tipos de elementos estructurales
(porticos, placas, etc.) o incluso a otros dominios como la optimizacion topoldgica o la
fabricacién aditiva.
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Capitulo 2. MARCO TEORICO Y MARCO TEC-
NOLOGICO

El presente capitulo tiene como objetivo establecer los fundamentos tedricos que sustentan
el desarrollo de este trabajo y las herramientas desarrolladas. Dado que el proyecto combi-
na conceptos propios de la ingenieria estructural con técnicas de aprendizaje automatico, el
marco teorico se organiza en dos bloques principales: calculo estructural y aprendizaje auto-
matico. Luego se describe el marco tecnoldgico que sustenta la solucién propuesta en este
trabajo.

2.1 Marco Teorico

En primer lugar, se abordan los principios de la teoria clasica de vigas, base del analisis es-
tructural de componentes lineales sometidos a cargas. Se revisan los métodos tradicionales
de resolucion, las hipotesis fundamentales del modelo de Euler-Bernoulli y la transicién hacia
enfoques numéricos mas generales, como el Método de los Elementos Finitos (MEF). Este
método constituye la herramienta principal para el analisis computacional de estructuras, per-
mitiendo evaluar el comportamiento de vigas con diferentes condiciones de contorno, tipos
de carga y geometrias de seccion.

En segundo lugar, se introduce el marco teérico del aprendizaje automatico (Machine Lear-
ning, ML), con especial énfasis en los métodos supervisados aplicados a problemas de regre-
sién. En este contexto, se abordan los principios fundamentales del entrenamiento, validacion
y evaluacién de modelos predictivos, incluyendo tanto algoritmos de tipo ensamble como el
HistGradientBoostingRegressor o redes neuronales. Estos enfoques permiten aprender las
relaciones no lineales existentes entre las caracteristicas geométricas, materiales y de carga
de las vigas, y las respuestas estructurales correspondientes, como la tensién y el desplaza-
miento maximos. Con ello, se logra estimar dichas variables con alta precision y en tiempos
de calculo significativamente menores que los requeridos por los métodos numéricos tradi-
cionales basados en el MEF.

De este modo, en esta seccién se establece la base tedrica necesaria para comprender el
desarrollo posterior del modelo propuesto y justificar las decisiones adoptadas en el trabajo.

2.1.1. Sistema de coordenadas y unidades

A lo largo del presente proyecto se adopta un sistema de referencia cartesiano tridimensional
con el fin de describir de forma coherente la geometria, las cargas y las respuestas estruc-
turales de las vigas analizadas. Las vigas se consideran contenidas en el plano XY, con el
eje X coincidente con el eje longitudinal de la viga y el eje Y perpendicular a ella dentro del
mismo plano. El eje Z se define como el eje que emerge del plano XY como se muestra en

la Figura[2.1]
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Figura 2.1. Representacion del sistema de coordenadas

Las cargas aplicadas pueden actuar en la direccion X (cargas axiales) o en la direccion Y
(cargas transversales), mientras que los momentos se aplican alrededor del eje Z, produ-
ciendo esfuerzos de flexién en el plano de la viga. Esta convencién se mantiene de forma
consistente tanto en la formulacién teérica como en la generaciéon de los modelos numéri-
cos y en el tratamiento de datos para el aprendizaje automatico. De este modo, todos los
resultados de desplazamientos, tensiones y reacciones se expresan en el mismo sistema de
coordenadas, garantizando la coherencia entre simulaciones FEM y modelos predictivos.

Sistema de unidades

En todo el trabajo se utiliza un sistema coherente basado en milimetros (mm), newtons (N) y
megapascales (MPa). Esto implica, en particular, la equivalencia:

1 MPa = 1 N/mm?.

Las magnitudes principales empleadas y sus unidades se muestran en la Tabla[2.1]

Tabla 2.1. Unidades adoptadas en el trabajo

Magnitud Unidad
Longitud L, dimensiones de seccién b, h,etc mm

Area A mm?

Momento de inercia I, mm?*

Médulo resistente W, mm?
Desplazamientos u, v mm

Modulo elastico E, tensiones o MPa (N/mm?)
Fuerzas nodales F'x, Fy N

Momentos My Nmm

2.1.2. Calculo estructural

El analisis estructural constituye uno de los pilares fundamentales de la ingenieria, ya que
permite determinar la respuesta de los elementos que componen una estructura frente a las
cargas que actuan sobre ella. Entre estos elementos, las vigas ocupan un lugar destacado
por su amplia utilizacion en la construccién, la ingenieria mecanica y la industria en general.
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Una viga puede definirse como un elemento lineal sometido principalmente a esfuerzos de
flexion y cortante, aunque también puede verse afectada por cargas axiales o0 momentos
aplicados. En el contexto de este proyecto, se consideran vigas bidimensionales en el plano
XY, capaces de soportar cargas puntuales en las direcciones X e Y, asi como momentos
aplicados alrededor del eje Z. Asimismo, se consideran dos configuraciones tipicas de apoyo:
vigas en voladizo y vigas biapoyadas. Las vigas en voladizo presentan un extremo empotrado
y el otro libre, lo que genera maximos esfuerzos de flexién en la zona del empotramiento y
desplazamiento en el extremo libre. Por su parte, las vigas biapoyadas se apoyan en ambos
extremos, permitiendo el giro pero impidiendo el desplazamiento vertical, y representan una
de las condiciones de contorno mas comunes en el andlisis estructural clasico.

Tradicionalmente, el calculo de vigas se ha abordado mediante métodos analiticos basados
en la teoria clasica de Euler-Bernoulli [3], que establece las relaciones entre cargas, esfuer-
zos internos, tensiones y desplazamientos bajo hipétesis simplificadoras. No obstante, este
enfoque resulta limitado cuando se requiere analizar sistemas mas complejos, con multiples
apoyos, cargas combinadas o secciones de geometria variable.

Para superar estas limitaciones, el Método de los Elementos Finitos (MEF) se presenta como
una herramienta numérica de gran versatilidad, capaz de modelar el comportamiento estruc-
tural de vigas de forma generalizada. A través de la discretizacién del dominio estructural y
la formulacién matricial de las ecuaciones de equilibrio, el MEF permite obtener resultados
precisos y facilmente automatizables, facilitando el analisis de un elevado namero de confi-
guraciones con un mismo marco teoérico. [1]

La Figura[2-ZJilustra el proceso de conversion de un modelo CAD tridimensional de un anclaje
a su correspondiente malla de elementos finitos, paso fundamental para posibilitar su analisis
estructural mediante el método de los elementos finitos (MEF).

Figura 2.2. Geometria y mallado MEF de un anclaje

Finalmente, dado que en este proyecto se han empleado vigas con distintos tipos de seccion
transversal, también se revisan los conceptos fundamentales relacionados con las propie-
dades geométricas de la seccién, como el area y el momento de inercia, parametros que
influyen directamente en la rigidez y el comportamiento estructural del elemento.
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Introduccion al calculo de vigas

El andlisis de vigas constituye uno de los problemas fundamentales en la ingenieria estruc-
tural. Una viga puede definirse como un elemento estructural esbelto cuya longitud es consi-
derablemente mayor que sus dimensiones transversales, y que esta sometido principalmente
a cargas perpendiculares a su eje longitudinal. Estas cargas generan esfuerzos internos de
cortante y flexién, que determinan las tensiones y deformaciones en el elemento.

El estudio clasico del comportamiento de vigas se basa en la teoria de Euler—Bernoulli, tam-
bién conocida como teoria de vigas esbeltas. Esta formulacién parte de una serie de hipotesis
simplificadoras que permiten expresar de forma analitica la relacion entre las cargas aplica-
das y la respuesta estructural:

« El material es lineal, elastico e isétropo, y cumple la ley de Hooke.

+ Las deformaciones son pequefias, de modo que las ecuaciones de equilibrio pueden
considerarse lineales.

+ Las secciones planas antes de la deformacion permanecen planas y perpendiculares
al eje neutro después de deformarse.

Bajo estas hipétesis, el comportamiento de una viga en el plano XY puede describirse me-
diante la ecuacion diferencial de la flexion (las expresiones que siguen se toman de [3, cap. 2—

7:

CZ; (EI dchlig@) = q(x)

donde E es el médulo de elasticidad del material, I es el momento de inercia de la seccién
respecto al eje neutro, w(x) es el desplazamiento vertical del eje de la viga y ¢(x) representa
la carga distribuida aplicada.

A partir de esta ecuacion, pueden obtenerse las expresiones para los esfuerzos internos:

2w(x
M(z) = —Elddxg )
V(z) = d]\;ix)

donde M (z) es el momento flector y V' (x) el esfuerzo cortante. Las tensiones normales en
la fibra a una distancia y del eje neutro se calculan como:

M(z)y
T

O'(I‘,y) =

En el caso de vigas con cargas axiales 0 momentos aplicados alrededor del eje Z, las ecua-
ciones de equilibrio deben ampliarse para incluir el efecto de las fuerzas longitudinales N (z),

17



Prediccién Inteligente del Comportamiento Mecéanico de

Vigas usando Machine Learning y Analisis por Elementos ue Universidad
Finitos Europea

Daniel Lépez Lopez

obtenidas a partir de la relacién:

dN (x)
dx

+px($) =0

donde p,(x) es la carga distribuida en direccion axial.

El calculo analitico de vigas se realiza aplicando condiciones de contorno que dependen del
tipo de apoyo (empotrado, articulado o libre), resolviendo las ecuaciones diferenciales de
equilibrio y obteniendo los diagramas de cortante, momento y desplazamiento. En los casos
mas simples como vigas biapoyadas o en voladizo con cargas uniformes o puntuales, las
soluciones pueden obtenerse de forma exacta mediante férmulas conocidas. Sin embargo,
para configuraciones mas complejas, con multiples cargas, secciones variables o apoyos
intermedios, la resolucion analitica resulta impracticable.

Por este motivo, el andlisis estructural moderno recurre a métodos numéricos que permiten
resolver el problema de forma generalizada. Entre ellos, el Método de los Elementos Fini-
fos (MEF) se ha consolidado como la herramienta mas versatil y precisa, ya que permite
discretizar la viga en elementos y formular las ecuaciones de equilibrio en forma matricial,
adaptandose facilmente a cualquier tipo de geometria, condicién de contorno o esquema de
carga [1]

Limitaciones del calculo manual

Aunque el célculo analitico de vigas basado en la teoria de Euler—Bernoulli ofrece resultados
exactos para un conjunto limitado de configuraciones, su aplicabilidad practica se ve restrin-
gida por multiples factores relacionados con la complejidad geométrica, las condiciones de
contorno y la naturaleza de las cargas. La formulacion diferencial que describe la flexion de
una viga requiere integrar varias veces las ecuaciones de equilibrio y aplicar correctamente
las condiciones de contorno para obtener el campo de desplazamientos. Este procedimiento,
aunque viable en casos simples, se vuelve ineficiente o directamente inabordable en estruc-
turas reales.

Entre las principales limitaciones del calculo manual pueden destacarse las siguientes:

» Geometrias complejas: las expresiones analiticas sélo son validas para vigas de sec-
cion constante. Cuando la seccién varia a lo largo del eje, el momento de inercia ()
deja de ser constante, lo que impide obtener soluciones cerradas.

+ Condiciones de contorno multiples o mixtas: la presencia de apoyos intermedios,
empotramientos parciales o combinaciones de restricciones dificulta enormemente la
resolucién manual de las ecuaciones diferenciales.

» Cargas no uniformes o combinadas: cuando la viga esta sometida simultaneamente
a cargas distribuidas, puntuales o momentos aplicados, la superposicion de efectos
requiere realizar integraciones sucesivas, lo que incrementa el riesgo de errores y la
complejidad algebraica.
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» Materiales heterogéneos o anisotropos: la variacién espacial del médulo de elasti-
cidad E(x) introduce no linealidades que imposibilitan la resolucién exacta mediante
métodos tradicionales.

+ Anadlisis de sistemas estructurales: el estudio de poérticos, entramados o estructuras
continuas formadas por multiples vigas conectadas requiere formular sistemas de ecua-
ciones simultaneas de gran tamano, lo que excede la capacidad del calculo manual.

Ademas de estas limitaciones practicas, el célculo manual carece de flexibilidad y automati-
zacion. Cada modificacién en las cargas, geometria o apoyos obliga a repetir todo el proceso
de resolucién, lo que lo hace ineficiente en entornos de disefio iterativo o de optimizacion
estructural. En consecuencia, resulta necesario recurrir a métodos numéricos que generali-
cen la formulacién teérica y permitan resolver de manera sistematica cualquier configuracion
estructural.

Entre estos métodos, el MEF destaca por su capacidad para discretizar la estructura en ele-
mentos simples y resolver las ecuaciones de equilibrio de forma matricial. Este enfoque no
solo amplia el rango de problemas tratables, sino que también facilita la automatizacion y la
integracién con procesos computacionales avanzados, como el aprendizaje automatico, que
se abordan en capitulos posteriores.

Fundamentos del Método de los Elementos Finitos aplicado a vigas 2D

El Método de los Elementos Finitos constituye una de las herramientas numéricas mas em-
pleadas en ingenieria para la resolucion de problemas estructurales. Su principal ventaja
radica en la capacidad de analizar estructuras con geometrias y condiciones de contorno ar-
bitrarias mediante la discretizacion del dominio (£2) continuo en un nimero finito de elementos
mas simples, interconectados en nodos como se muestra en la Figura

N node

discretised domain Q" ,

continuum 2 \

finite element domain Q¢

Figura 2.3. Aproximacién lineal de la geometria

En el caso de estructuras tipo viga, resulta especialmente eficiente el uso de elementos uni-
dimensionales (1D). Este tipo de elementos permiten representar el comportamiento axial,
flexional y de cortante de una barra sin necesidad de modelar su geometria tridimensional
completa. De este modo, se reduce drasticamente el nimero de grados de libertad y, por
tanto, el coste computacional de la simulacién, manteniendo una precision adecuada para el
analisis de estructuras esbeltas. Esta simplificacion es especialmente ventajosa cuando se
requiere generar un elevado nimero de modelos, como en el presente trabajo, orientado a la
creacién de una base de datos para el entrenamiento de modelos de aprendizaje automatico.

19



Prediccién Inteligente del Comportamiento Mecéanico de
Vigas usando Machine Learning y Analisis por Elementos
Finitos

Daniel Lépez Lopez

Universidad
Europea

La Figura muestra un modelo mallado mediante elementos unidimensionales (1D), los
cuales conforman el modelo MEF global. Cada elemento posee su propio sistema de re-
ferencia local, donde se definen sus propiedades y ecuaciones de comportamiento. De este
modo, el modelo de elementos finitos se construye a partir de la unién de multiples elementos
individuales, que al ensamblarse forman la estructura global.

Qitt / global node number
I+1

e o @ @ [
e o [ I— local node number
n=1 n=2 n=1 77:2/

Figura 2.4. Representacion de la discretizacion de un elemento 1D

En el caso de una viga plana contenida en el sistema XY, cada elemento de viga se define
por dos nodos situados en sus extremos, con tres grados de libertad por nodo: desplaza-
miento axial u en la direccién X, desplazamiento transversal v en la direccion Y y rotacién
0. alrededor del eje Z. El vector de desplazamientos nodales del elemento puede expresarse
como [4]:

uy
U1
th
U2
V2
| 02

La relacion entre las fuerzas nodales y los desplazamientos se establece mediante la matriz
de rigidez del elemento:
fo = Kode

Para un elemento de viga-columna 2D (que considera esfuerzos axiales y de flexion en el
plano), la matriz de rigidez local en coordenadas del elemento se expresa como:

1
b
&

Tz 0 0 -4 0 0

0 1251 651 0 _12EI  6EI
3 .2 .3 1,2

0 6E1 4FE1 0 6F1 2E1
K. = L2 L L2 L
e | _AE 0 0 AE 0 0

L L
0 _12B1 _GEI 0 12EI __6EI

I3 12 3 T2

0 6E1 2E1 0 6E1 4FE1
= L2 L L2 L
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En la matriz de la pagina anterior, A es el area de la seccion transversal, £ el médulo de
elasticidad, I el momento de inercia y L la longitud del elemento.

Cuando la viga no esta alineada con el eje X, se requiere transformar las magnitudes del sis-
tema local al sistema global de coordenadas. Para ello se utiliza una matriz de transformacion
T, de modo que la rigidez en coordenadas globales se obtiene como:

K® — TTK, T

Tras el célculo de las matrices de rigidez de todos los elementos, se procede al ensamblaje
en una matriz global K, que relaciona el vector global de desplazamientos d con el de fuerzas
nodales externas F':

Kd=F

El sistema se resuelve imponiendo las condiciones de contorno adecuadas por ejemplo, des-
plazamientos nulos en apoyos o empotramientos y aplicando las cargas externas en los no-
dos correspondientes. La resolucion del sistema proporciona los desplazamientos nodales, a
partir de los cuales pueden obtenerse los esfuerzos internos, tensiones y deformaciones de
cada elemento.

El uso de elementos 1D de viga constituye, por tanto, una solucién equilibrada entre precisién
y eficiencia. Este enfoque permite representar de forma fiable el comportamiento estructural
de vigas rectas bajo cargas axiales, transversales y momentos flectores, al tiempo que po-
sibilita la generacion automatica de miles de modelos con distintos materiales, secciones y
condiciones de contorno, lo cual resulta esencial para la aplicacion de técnicas de aprendizaje
automatico basadas en grandes conjuntos de datos.

Tipos de secciones transversales y propiedades geométricas

El comportamiento estructural de una viga depende de manera directa tanto de las propieda-
des geométricas de su seccion transversal como de las caracteristicas mecanicas del mate-
rial empleado. Estos parametros determinan la rigidez del elemento frente a cargas axiales,
cortantes y de flexion, y condicionan la magnitud de las tensiones y desplazamientos que se
generan bajo una determinada carga.

Influencia de la geometria de la seccion La geometria de la seccién transversal se carac-
teriza mediante propiedades como el area A y el momento de inercia I, los cuales intervie-
nen de forma explicita en la formulacién de las ecuaciones del comportamiento estructural.
Mientras que el area define la capacidad portante frente a esfuerzos axiales, el momento de
inercia determina la resistencia del elemento frente a la flexiéon. Un valor mayor de I implica
una mayor rigidez a flexién y, por tanto, menores desplazamientos y tensiones en servicio.
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En este proyecto se han considerado varios tipos de secciones transversales representativas
de distintas configuraciones estructurales:

+ Seccion rectangular: de dimensiones base b y altura h, con un momento de inercia da-

3 . . .
do por I = % Es una de las secciones mas comunes y presenta un comportamiento

simétrico frente a la flexién en el plano principal.

» Seccidn rectangular hueca: definida por dimensiones exteriores b., h. y dimensiones
interiores b;, h;. Sumomento de inercia se obtiene como la diferencia entre las inercias
de los rectangulos exterior e interior:

_ beh3—b;h}
- 12

1

Esta configuracién optimiza la relacion rigidez-peso, reduciendo masa sin pérdida sig-
nificativa de capacidad resistente.

» Seccidn circular maciza: de radio , cuyo momento de inercia respecto al eje neutro es
4 . e . .
I = T-. Se emplea en elementos donde la carga puede actuar en distintas direcciones
y se requiere un comportamiento isotropico.

« Seccion circular hueca: de radios exterior r. e interior r;, con momento de inercia

Este tipo de seccion presenta una elevada eficiencia estructural, combinando buena
rigidez a flexion y torsion con un peso reducido.

» Seccion en I: formada por un alma y dos alas, concentra la mayor parte del material
lejos del eje neutro, maximizando el momento de inercia con una cantidad minima de
material. Por ello, ofrece una rigidez a flexion muy elevada con un peso relativamente
bajo, siendo la mas utilizada en estructuras metalicas.

En general, secciones con un momento de inercia mayor reducen los desplazamientos verti-
cales y las tensiones maximas bajo una misma carga, mientras que las secciones huecas o
aligeradas permiten mantener una buena rigidez con menor masa, lo que resulta ventajoso
en aplicaciones donde el peso es un factor critico.

Influencia del material El material constituye otro de los factores determinantes en el com-
portamiento de una viga. Sus propiedades mecanicas principalmente el médulo de elasti-
cidad E'y el limite elastico o, influyen directamente en la rigidez y la capacidad resistente
del elemento. EI moédulo E interviene en la relacion constitutiva entre tensién y deformacion
(o = E¢), de modo que materiales con un valor de E mayor presentan menores deformacio-
nes bajo una misma carga aplicada [5].
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En el presente trabajo se han considerado cuatro materiales metdlicos representativos: ace-
ro al carbono, acero inoxidable, aluminio y titanio. Los dos primeros presentan una elevada
rigidez y resistencia, lo que los hace idéneos para estructuras sometidas a grandes esfuer-
zos, mientras que el aluminio y el titanio destacan por su menor densidad y buena relacién
resistencia-peso, siendo habituales en aplicaciones donde el peso es un factor critico. De esta
forma, la seleccién del material implica un compromiso entre rigidez, peso y capacidad de de-
formacion, criterios que condicionan tanto el comportamiento estructural como la respuesta
obtenida por los modelos de predicciéon desarrollados.

Tension equivalente de Von Mises y criterio de fluencia En analisis estructural de ma-
teriales ductiles se emplea de forma predominante el criterio de energia de distorsion, cuyo
indicador escalar es la tension equivalente de Von Mises. Este escalar sintetiza un estado
triaxial de tensiones en una Unica magnitud comparables con el limite elastico del material,
de modo que la fluencia se produce cuando

Oym = Oy.

En términos de las tensiones principales o1, 09, 03, la definicion clasica es [3]:

o = \/5[<al—oz>2+<az—ag>2+<ag—ol>2} ~ V3,

donde Js es el segundo invariante del desviador de tensiones. En estado de tension plana
(o3 = 0), habitual en ld&minas o cuando las tensiones fuera del plano son despreciables, se
obtiene

Oym = \/ag + 0% — 0.0y + 372,

En vigas sometidas principalmente a flexion y cortante, la contribucién dominante a o, pro-
viene de la tensiéon normal de flexion y, en menor medida, de la cortadura. Los solvers de
elementos finitos para elementos 1D (como CBEAM) calculan la envolvente de o, en fibras
de la seccién, lo que permite identificar directamente la zona critica del elemento.

Razones para utilizar oy, como objetivo de entrenamiento:
» Es invariante frente a rotaciones de ejes y agrega de forma coherente estados multi-
axiales en un Unico escalar interpretable frente a .

» Presenta una superficie de fluencia suave y diferenciable, mas apropiada para ajuste
numérico y para modelos de aprendizaje que la alternativa de Tresca, que es mas
conservadora pero no suave.

 Correlaciona bien con el inicio de la plasticidad en materiales metéalicos ductiles isotré-
picos, que son los materiales considerados en este trabajo.

+ Esta disponible de forma directa en la salida del solver, reduciendo ambigliedades de
posproceso y facilitando la trazabilidad entre simulaciéon y modelo.
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Limitaciones y alcance. El uso de oy, es adecuado para materiales ductiles en régimen
elastico-lineal hasta las proximidades de o,. No es un criterio de rotura fragil, para materiales
cuasi-fragiles o fendbmenos dominados por traccién pura podrian ser preferibles otros indi-
cadores. En este proyecto, centrado en aceros, aluminio y titanio en el marco elastico, oy,
resulta un objetivo robusto y fisicamente significativo para el entrenamiento y evaluacién de
los modelos predictivos, ya que todos los materiales seleccionados son metales dlctiles.

2.1.3. Aprendizaje automatico

En los ultimos anos, el aprendizaje automatico se ha consolidado como una herramienta de
gran utilidad en el ambito de la ingenieria, gracias a su capacidad para identificar patrones
complejos y realizar predicciones precisas a partir de grandes volumenes de datos. A diferen-
cia de los métodos analiticos o numéricos tradicionales, que requieren la formulacién explicita
de las ecuaciones que rigen el comportamiento fisico, los modelos de ML aprenden directa-
mente las relaciones entre las variables de entrada y salida a partir de los datos disponibles.

En el contexto del andlisis estructural, esta aproximacién resulta especialmente valiosa, ya
que permite aproximar el comportamiento de elementos como las vigas sin necesidad de
realizar una simulaciéon completa mediante el Método de los Elementos Finitos para cada ca-
so0. Una vez entrenado, el modelo es capaz de predecir en cuestion de milisegundos variables
estructurales de interés como la tension maxima y el desplazamiento maximo a partir de las
caracteristicas geométricas, de material y de carga del elemento.

El proceso general del aprendizaje automatico puede dividirse en varias etapas: recopilacion
y preparacion de los datos, seleccién de las variables mas representativas (feature enginee-
ring), eleccién del modelo, entrenamiento mediante un conjunto de datos de entrenamiento y
posterior validacién del rendimiento con un conjunto de prueba independiente. La calidad de
las predicciones depende tanto de la representatividad de los datos de entrada como de la
capacidad del modelo para generalizar patrones no vistos durante el entrenamiento.

En este proyecto se han empleado dos tipos de modelos supervisados de regresiéon con
el objetivo de comparar su precision y comportamiento: un HistGradientBoostingRegressor
(HGBR) y una red neuronal artificial (RNA). El primero pertenece a la familia de los modelos
basados en arboles de decisién y se caracteriza por su eficiencia y robustez frente a datos
tabulares con posibles interacciones no lineales. La red neuronal, por su parte, constituye un
enfoque mas flexible capaz de aproximar funciones de alta complejidad, aunque requiere un
mayor numero de parametros y un proceso de entrenamiento mas cuidadoso para evitar el
sobreajuste.

El analisis comparativo entre ambos enfoques permite evaluar las ventajas e inconvenientes
de cada técnica en la prediccion de resultados estructurales, y valorar su idoneidad para la
integracion en herramientas de disefio predictivo y optimizacién estructural.
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Fundamentos del aprendizaje automatico y la regresion supervisada

En regresion supervisada se busca un modelo fy que aproxime la relacion y ~ fy(x) entre
un conjunto de caracteristicas x € R? (propiedades geométricas, de material, condiciones de
contorno y cargas) y una respuesta estructural continua y (p. €j., tensiéon o desplazamiento
maximos). El entrenamiento consiste en minimizar el riesgo empirico

N

R(9) = %Zﬁ(%, fo(xi)),

=1

con pérdidas tipicas MSE/MAE y regularizacién para favorecer la generalizacion [6]. La va-
lidacion (hold-out, CV k-fold o CV con grupos por geometria/seccion) estima el rendimiento
fuera de la muestra [7] y guia la seleccién de hiperparametros, evitando fuga de informacion
cuando existen instancias muy correlacionadas.

En problemas estructurales, el disefio de rasgos (feature engineering) es clave: incorporar
escalas fisico-dimensionadas (p. ej., términos del tipo L?/EI o L*/EI) y razones adimen-
sionales (esbeltez, h/b, r¢/t, etc.) mejora la estabilidad numérica y reduce la varianza del
estimador al alinear el modelo con la teoria de vigas. Esta idea es compatible con modelos
de muy distinta naturaleza:

» Modelos basados en arboles (p. €j., HistGradientBoostingRegressor): capturan inter-
acciones y no requieren estandarizacion de entradas; la regularizacién efectiva surge
de la profundidad, el tamario minimo de hoja, el learning rate y el subsampling.

» Redes neuronales: requieren escalado/normalizaciéon de entradas; su mayor capaci-
dad para relaciones no lineales se controla con early stopping, L2 y/o dropout [8].

El rendimiento debe reportarse con métricas absolutas (RMSE, MAE) y relativas (MAPE
cuando procede), y, en este contexto, con errores normalizados por escalas fisicas (p.€j.,
desplazamiento normalizado por L3/EI o L*/EI segun el esquema de carga/contorno), lo
que facilita interpretar la precisién en términos de la teoria de vigas.

Rasgos fisico-informados y escalas

Con el objetivo de guiar el aprendizaje mediante conocimiento fisico, se han definido caracte-
risticas que reflejan directamente los mecanismos de rigidez y la influencia de las condiciones
de contorno y de las cargas. A nivel conceptual:

Propiedades de seccion y material Se emplean area A, momento de inercia a flexion 1,
moédulo resistente W, = I,/(h/2) y una aproximacién de la inercia torsional J (tipo Saint-
Venant para secciones delgadas [3]) como indicadores de rigidez. El médulo elastico E se
incorpora a través de EI, magnitud central en la teoria de vigas, junto con densidad o limites
resistentes cuando procede. Derivados Utiles:

Tz = )

L
r,

[

J
FEL
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Estas magnitudes capturan rigideces efectivas y esbeltez, que correlacionan con desplaza-
mientos y tensiones.

Condiciones de contorno: longitud efectiva Las constantes de la solucion de la viga
dependen del tipo de apoyo/empotramiento. Para incorporarlo de forma compacta se utiliza
un factor de longitud efectiva K (funcién del par de apoyos) y sus potencias/interacciones:

Lig L EI EIL
EI’ EI' Ly’ L%

Leg = K L,

La Tabla muestra los valores tipicos de K (referencia [3]) para determinar la longitud
efectiva en una viga.

Tabla 2.2. Factores de longitud efectiva K

Configuracion estructural K

Voladizo: empotrado—libre 2.0
Voladizo invertido: liore—empotado 2.0
Biapoyada: articulado—articulado 1.0
Empotrada en ambos extremos: empotrado—empotado 0.5
Empotrado—articulado (o articulado—empotrado) 0.7

Asi se aproximan, de manera unificada, las distintas constantes de proporcionalidad de los
desplazamientos en funcién del contorno, mejorando la transferibilidad del modelo entre con-
figuraciones.

Cargas agregadas y escalas de respuesta Se agregan componentes de carga por di-
reccion (p.ej., Fy, Fx) y momentos aplicados en Z, junto con posiciones adimensionales
x/L cuando existen. Se definen escalas fisicas que aproximan el orden de magnitud de la
respuesta:

By L emy | Pyl Fy

escala de desplazamiento: dscale ~ 770 Oscale ol 7

(intensidad),

Mot

W, ’

donde M, es una relacién del momento maximo (p. ej., Pab/ L para cargas puntuales en viga
simplemente apoyada, extendido de forma aditiva para varias acciones). Estas escalas, y sus
interacciones, informan al modelo sobre cOmo varian wmax ¥ omax con L, E1, la distribucién
de cargas y el contorno.

escala de tension:  ogcale ~

Interacciones y transformaciones Se incluyen interacciones fisicamente motivadas (p. €j.,
Oscale - Lett, Lot - L2/ EI) y transformaciones logaritmicas suaves (log(1 + x)) para estabilizar
rangos amplios y aproximar relaciones potenciales. En arboles de gradiente estas expan-
siones reducen la profundidad necesaria; en redes neuronales facilitan la optimizacion y la
calibracion de la salida.
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Implicaciones para HGBR y RNA Los modelos tipo HGBR aprovechan de forma nati-
va particiones por region de caracteristicas sin requerir estandarizacion; las escalas fisico-
informadas mejoran su sesgo inductivo y la extrapolacién local. En la RNA, ademas del es-
calado de entradas, el uso de L.g, E'I y razones adimensionales reduce el condicionamiento
del problema y acelera la convergencia. En ambos casos, la validacién por grupos (p. €j., por
tipo de seccién o familia geométrica) evita sobreestimar el rendimiento cuando hay instancias
muy similares.

En conjunto, este disefio de caracteristicas integra de forma explicita la teoria de vigas (rigi-
dez por flexion E1, efecto del contorno via K, escalas L3/EIy L*/EI y métricas de seccion
W, r,) dentro del proceso de aprendizaje, lo que permite a los modelos predecir con mayor
fidelidad las variables objetivo (tensidén y desplazamiento maximos) y facilita comparar, en
condiciones equitativas, el desempeno de HistGradientBoostingRegressor y de la red neuro-
nal.

Modelo basado en arboles: HistGradientBoostingRegressor
[91, [10]

El HistGradientBoostingRegressor (HGBR) es un método de boosting de gradiente para re-
gresién que utiliza arboles de decision como aprendices débiles y una discretizacion en his-
togramas para acelerar el entrenamiento. Su idea central es construir un modelo aditivo

M

Fr(x) = > vhim(x),

m=1

donde h,, es un arbol de decisién ajustado sobre los residuos (0, mas rigurosamente, el
negativo del gradiente de la pérdida) calculados respecto al modelo acumulado F;,,_1,y v €
(0, 1] es el learning rate (shrinkage). En cada iteracion,

g = AL (yi, F(xi))
(2 6F i
F=Fp_1
y el arbol h,, se ajusta para aproximar ¢("™). El proceso reduce iterativamente el error de en-
trenamiento manteniendo un buen control de la varianza gracias al shrinkage, la profundidad
limitada de los arboles y restricciones de hoja.

Discretizacion por histogramas Antes de buscar cortes, HGBR binariza cada caracteris-
tica en un ndamero fijo de blogues (bins). Esto: reduce el coste computacional de evaluar
candidatos de particion, aporta regularizacién adicional al suavizar ruido, hace que el método
sea robusto a escalado y valores extremos moderados.
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Pérdida, regularizacion y robustez La pérdida tipica es MSE, aunque en presencia de
atipicos y heteroscedasticidad puede emplearse Huber o Quantile (para intervalos de predic-
cién). La regularizacion se controla mediante:

* Learning rate v (p.ej., 0.02-0.1): valores menores requieren mas arboles pero suelen
generalizar mejor.

* Estructura del arbol: max_leaf_nodes (p.€j., 16—64) 0 max_depth (3-8).
+ Tamano de hoja: min_samples_leaf (p.ej., 20—-200) limita el sobreajuste local.

+ L2 sobre los valores de hoja (12_regularization) y submuestreo estocéastico de fila-
s/columnas cuando esté disponible.

* Bins: max_bins (p. ej., 64—255) controla la granularidad de cortes.

Con early stopping (fraccién de validacion 10—20 %), el numero de iteraciones M se deter-
mina automaticamente (tipicamente unas centenas a mil+).

Preprocesado y rasgos Los arboles no requieren estandarizacion. No obstante, la inclu-
sién de rasgos fisico-informados (p.e€j., E1, Leg, Lg’ﬁ J/EI, W,, r,, esbeltez L/r,) mejora el
sesgo inductivo: el modelo parte de relaciones cercanas a la teoria de vigas y necesita me-
nos profundidad para captarlas. Las variables categéricas (tipo de apoyo, tipo de seccién)
deben tratarse como categéricas (one-hot o manejo nativo si la implementacién lo permite)
para evitar una falsa ordenacién.

Diagnostico e interpretabilidad

 Importancia de caracteristicas (gain/permutacion) para identificar los predictores domi-
nantes (suele destacar E1I, L.g, escalas ~ L?/EI y W, en tensiones).

» Dependencia parcial (PDP) y ICE para estudiar cOmo varian wysx Y 0msx €On L, ET,
Fy o Mz, manteniendo el resto fijo.

 Andlisis de errores por familia (seccidn, apoyo, rango de cargas) para detectar sesgos
sistematicos.

Ventajas y limitaciones Ventajas: entrenamiento rapido, robustez a valores atipicos (outliers)
leves (con Huber), poco preprocesado, buena interpretacién local y fuerte rendimiento en
datos tabulares. Limitaciones: extrapola peor fuera del dominio de entrenamiento (tipico en
arboles) y puede infraestimar tendencias suaves si falta profundidad o bins.
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Modelo de red neuronal para regresion

Las redes neuronales artificiales (RNA) aproximan funciones no lineales mediante la compo-
sicion de capas afines y activaciones. Para un problema de regresién con dos salidas (tensién
maxima y desplazamiento maximo), resulta natural una arquitectura multitarea con un tronco
comun y, opcionalmente, cabezas especificas:

v =(57,99) = fo(x),

donde fy es una MLP (perceptrén multicapa o en inglés multilayer perceptron) con L capas
ocultas.

Arquitectura y activaciones
» Capas ocultas: 2—4 capas densas con 64—256 neuronas suelen equilibrar capacidad y
generalizacion en datos tabulares.
+ Activacién: ReLU o GELU por su estabilidad y capacidad para modelar no linealidades.
» Normalizacion: BatchNorm o LayerNorm (opcional) para estabilizar el entrenamiento.

* Multicabeza: una cabeza para tensién maxima (6,,4«) Y otra para desplazamiento ma-

A

Ximo (d4x) permite pérdidas y escalas diferentes por tarea.

Pérdida, escalado de objetivos y optimizacion Las RNA son sensibles a escalas. Es
recomendable:
» Estandarizar entradas continuas (media cero, varianza unitaria) y codificar categorias.

« Normalizar objetivos por una escala fisica (p. ej., & = §/(FyL3:/EID), 6 = 0 /(Myet/W)).
El modelo aprende g y, al inferir, se desnormaliza. Esto reduce la heteroscedasticidad
y acelera la convergencia.

« Pérdida: MSE o Huber por cabeza; suma ponderada si las tareas tienen magnitudes
distintas. Las ponderaciones pueden fijarse para igualar las varianzas de cada objetivo.

Regularizacion y control del sobreajuste

« Early stopping con paciencia 20-50 épocas sobre una validacién separada (o CV).
+ Weight decay (L2 10~°-1072) y dropout ligero (0.05-0.2) en capas intermedias.

+ Data splitting con grupos (por geometria/tipo de seccién/apoyos) para evitar fuga de
informacion.

Incertidumbre y calibracion Ademas del valor puntual, pueden estimarse intervalos:

+ MC Dropout: mantener activo el dropout en inferencia y muestrear multiples pases.

» Pérdida cuantilica: dos salidas por objetivo (percentiles p5/p95) para intervalos directos.
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Diagnostico e interpretabilidad

» Curvas de aprendizaje (entrenamiento vs. validacion) para vigilar sobreajuste/infrapa-
rametrizacion.

+ Sensibilidades (gradientes, saliency) y PDP sobre entradas clave (Leg, E1, Fy, Myz),
interpretando tendencias fisicas (p. €j., wmax T con Ly | con EI).

Ventajas y limitaciones Presenta una gran capacidad para relaciones altamente no linea-
les y para compartir informacién en multitarea. Limitaciones: requieren mas cuidado en pre-
procesado/escalado, son menos interpretables de base y pueden sobreajustar si no se regu-
larizan y validan correctamente.

Comparacion entre HGBR y RNA

HGBR

Red neuronal

Preprocesado
Capacidad no lineal
Regularizacion
Extrapolacion

Interpretabilidad
Robustez a ruido

Entrenamiento

Minimo, robusto a escalas

Media

v, hojas, profundidad, L2, bins,
early stopping.
Limitada fuera del dominio visto

Buena (importancias, PDP/ICE)

Alta (con Huber y hojas mini-
mas)

Rapido.

Requiere estandarizacion y nor-
malizacién

Muy alta (aproxima funciones
suaves/compuestas)

Early stopping, weight decay,
dropout, arquitectura

También limitada; mejora con
rasgos fisico-informados

Media (curvas de sensibilidad)
Media, sensible a escalas y ati-
picos si no se cuida

Mas costoso, requiere ajuste
fino

En este proyecto, ambos modelos se entrenan con la misma particion/validacién (preferi-
blemente cruzada por grupos) y se evalian con métricas absolutas (RMSE, MAE) y relativas
(MAPE), ademas de errores normalizados por escalas fisicas (~ Lg’ﬁ/EI para desplazamien-
tos; M /W, para tensiones). La comparacién conjunta permite valorar precisién y robustez.
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2.2 Marco Tecnoldgico

Para llevar a cabo este proyecto se ha empleado un conjunto de herramientas tecnoldgicas
que cubren todas las etapas del flujo de proyecto, desde la generacion y resolucién de mo-
delos estructurales hasta el entrenamiento de los modelos de aprendizaje automatico y el
desarrollo de la aplicacién final. La correcta integracion de estas herramientas ha permitido
automatizar el proceso de simulacion, procesar grandes volimenes de resultados y construir
una interfaz interactiva que facilita el uso de los modelos desarrollados.

+ Altair HyperMesh: software de preprocesado FEM utilizado para modelar automatica-
mente vigas con diferentes combinaciones de geometria, material, condiciones de con-
torno y cargas. La automatizacién de la generacion de modelos se ha llevado a cabo
mediante el uso de scripts en lenguaje TCL, permitiendo crear de forma eficiente miles
de configuraciones estructurales distintas. HyperMesh también incluye Hyperview, mo-
dulo de posprocesado de la suite Altair HyperWorks, disefiado para visualizar, analizar
e interpretar los resultados obtenidos de simulaciones por elementos finitos.

« Altair OptiStruct: solver de elementos finitos encargado de resolver los modelos gene-
rados en HyperMesh. OptiStruct proporciona resultados precisos de desplazamientos,
tensiones y reacciones nodales, los cuales constituyen la base del conjunto de datos
empleado para el entrenamiento de los modelos de aprendizaje automatico. En el Ane-
xo[C|se describe en detalle el funcionamiento de OptiStruct y su integracién con Hyper-
Mesh, explicando cémo ambas herramientas interactian en el proceso de modelado y
analisis estructural.

« PyNastran: libreria de Python utilizada para la lectura y procesamiento automatizado
de archivos de resultados FEM en formato .op2. Gracias a esta herramienta se han
extraido de forma automatica los valores de interés como desplazamientos, tensiones
y reacciones garantizando la trazabilidad y consistencia de los datos obtenidos.

» Python: lenguaje principal del proyecto. Se ha empleado tanto para la generacién de
combinaciones estructurales y el preprocesamiento de los datos como para la imple-
mentacion de los modelos predictivos y el desarrollo de la interfaz grafica. Su eco-
sistema de librerias cientificas ha permitido cubrir todo el flujo de trabajo de manera
integrada.

+ Librerias de aprendizaje automatico: se han utilizado bibliotecas especializadas co-
mo scikit-learn, LightGBM, TensorFlow y Keras para la implementacién, entrenamiento
y validacién de los modelos de regresion. Estas herramientas proporcionan algoritmos
optimizados y facilitan la experimentacién con diferentes arquitecturas y estrategias de
entrenamiento.

+ Streamlit: framework de desarrollo web utilizado para construir la aplicacion Alabeam,
una herramienta interactiva que permite al usuario obtener predicciones estructurales
a partir de los parametros geométricos, materiales y de carga definidos. Streamlit ofre-
ce una integracion directa con Python y una interfaz sencilla para la visualizacion de
resultados en tiempo real.
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Capitulo 3. ESTADO DEL ARTE

El uso de técnicas de aprendizaje automatico en ingenieria estructural ha crecido de forma
notable en la Ultima década. La motivacion principal es doble. Por un lado, los métodos de
elementos finitos ofrecen gran precision pero presentan costes computacionales elevados
cuando se exploran espacios de disefio amplios y multiples combinaciones de materiales,
secciones y condiciones de contorno. Por otro lado, los modelos de aprendizaje automatico
pueden aproximar respuestas estructurales de interés con tiempos de calculo muy reducidos,
lo que habilita predimensionados interactivos, analisis masivos y aplicaciones de asisten-
cia al disefo. La literatura reciente recoge tanto estudios de revision como demostraciones
aplicadas sobre vigas y marcos, asi como avances en modelos informados por la fisica. A
continuacién se sintetizan las lineas mas relevantes para este trabajo.

3.1 Modelos surrogate para acelerar o sustituir el FEM

Los modelos surrogate se entrenan con datos obtenidos de simulaciones de alta fidelidad pa-
ra predecir con rapidez magnitudes estructurales. Diversas revisiones y contribuciones mues-
tran que esta estrategia permite mantener errores controlados mientras reduce el tiempo de
computo de forma sustancial. En el ambito estructural, se emplean métodos de reduccién de
orden y aproximaciones de respuesta, asi como modelos puramente basados en datos que
actuan como sustitutos del FEM en tareas de evaluacion y toma de decisiones en tiempo casi
real [11]-[13].

3.2 Aprendizaje profundo para campos de tensiones y desplaza-
mientos

Cuando el objetivo es predecir campos completos de respuesta, las redes neuronales profun-
das han mostrado gran capacidad para aproximar distribuciones de tensiones o campos de
desplazamiento a partir de informacién geométrica y de carga. Resultados representativos
demuestran errores bajos frente al FEM y un potencial para integrarse en cadenas de calculo
aceleradas, especialmente en tareas de evaluacién rapida y disefio asistido [11], [14].

3.3 Ensembles de arboles en problemas tabulares estructurales

En problemas con entradas tabulares que recogen propiedades de seccién, material y car-
gas, los ensambles de arboles de gradiente, y en particular la variante de histograma, ofrecen
precisién, robustez y un preprocesado moderado. Ademas cuentan con soporte nativo para
valores ausentes, parada temprana y restricciones de monotonia, lo que facilita flujos de tra-
bajo reproducibles y eficientes en ingenieria [15], [16]. Esta familia es un buen contrapunto a
las redes neuronales cuando la estructura del dato es tabular y el disefio de caracteristicas
estd informado por la fisica.
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3.4 Redes informadas por la fisica para vigas

Las redes neuronales informadas por la fisica incorporan ecuaciones de equilibrio y rela-
ciones constitutivas en la funcion de pérdida. En vigas de Euler—Bernoulli se han publicado
marcos que resuelven problemas directos e inversos y que mejoran la eficiencia de datos,
con aplicaciones a respuestas dinamicas bajo cargas moéviles o a escenarios con medidas
escasas. Estos trabajos sefialan una via de integracion entre conocimiento fisico y aprendi-
zaje automatico para problemas de viga y portico [11], [17].

3.5 Aplicaciones especificas en vigas como surrogate del FEM

Existen contribuciones que sustituyen explicitamente el FEM de vigas por modelos de apren-
dizaje para predecir respuestas maximas y transitorias. En particular, se han presentado
comparativas entre arboles potenciados y redes neuronales, validando los resultados fren-
te a soluciones FEM. Estas evidencias son directamente relevantes para este TFM, centrado
en vigas en el plano XY con cargas en X y Y y momentos en Z, diferentes secciones y
varios materiales [18].

3.6 Sintesis y contribucion del trabajo

Las dos corrientes mas Utiles para el problema abordado son las siguientes. Primero, los en-
sambles basados en gradiente con histograma resultan muy eficaces en datos tabulares con
rasgos fisico informados. Segundo, las redes neuronales ofrecen mayor flexibilidad para cap-
turar no linealidades complejas y constituyen la base de enfoques informados por la fisica.
La contribucién de este trabajo consiste en construir un conjunto de datos FEM especifico de
vigas 2D, entrenar y comparar un HistGradientBoostingRegressor y una red neuronal sobre el
mismo espacio de entrada, y entregar una aplicacién interactiva que permita elegir el modelo
en funcién del compromiso entre rapidez, precision y robustez [11], [15].

3.7 Modelos industriales: Altair PhysicsAl como surrogate CAE de
propésito general

Dentro de las soluciones comerciales destaca Altair PhysicsAl, integrado en la plataforma
HyperWorks, cuyo objetivo es entrenar modelos predictivos a partir de datos de simulacion y
ensayo para realizar predicciones de fisica en nuevos disefios con gran rapidez. La propuesta
se alinea con la tendencia de sustituir o acelerar solvers tradicionales mediante modelos de
aprendizaje automatico entrenados con datos CAE histéricos y reutilizables entre proyectos
y geometrias similares [19], [20].

PhysicsAl se presenta como una tecnologia de geometric deep learning que aprende la re-
lacion entre forma y desempefio para cualquier fisica. Segun la documentacion corporativa,
una vez entrenados, los modelos pueden ofrecer predicciones hasta mil veces mas réapidas
que un analisis FEM convencional, o que habilita estudios de alternativas y validaciones pre-
liminares en tiempos muy reducidos [21], [22].
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La herramienta esta expuesta en el entorno de HyperMesh y permite crear conjuntos de da-
tos, entrenar y validar modelos, y generar predicciones directamente sobre modelos CAD o
mallas importadas, sin necesidad de parametrizar variables de disefio y admitiendo remalla-
dos [23]. La Figura [3.7]muestra la estructura de trabajo de PhysicsAl.

Scalar Predictions

Structured Data utpet Table
Explicit parameterization

Design Variables —— . ML . 320 MPa = :=<.

design
v 2 = variables
M = Curve Predictions

=" 7 J : T | == 4

\, :P'V\J'pl\f‘ x“n\"\j

Unstructured Data Field Predictions
Implicit parametrization - =
Shapes - K ! =
I=

Expert Predictions
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Figura 3.1. Flujo de trabajo de PhysicsAl

mesh or CAD

En las versiones recientes se han incorporado arquitecturas especificas para el entrenamien-
to, entre ellas el Graph Context Neural Simulator y el Transformer Neural Simulator. La in-
troduccién de estas variantes busca suavizar contornos de prediccién, reducir la sensibilidad
al tamano de malla y mejorar los tiempos en GPU, lo que refuerza su aplicabilidad en esce-
narios con mallas heterogéneas y requisitos de respuesta interactiva [24]. Diversas guias y
casos de uso muestran su despliegue como solver de IA dentro de flujos de trabajo de Hy-
perWorks con el lema de un Unico modelo y un Unico solver, y con integracién en procesos
de optimizacion de disefio acelerados [20], [25], [26].

Relacidn con el presente trabajo El enfoque de Altair PhysicsAl refuerza la tendencia in-
dustrial hacia modelos predictivos que actian como sustitutos acelerados del FEM. En este
trabajo se adopta la misma filosofia al entrenar y comparar un HistGradientBoostingRegressor
y una red neuronal sobre un conjunto de datos FEM de vigas 2D, con el objetivo de obtener
predicciones rapidas de desplazamiento y tension méximos. Aunque la solucién propuesta
es académica y centrada en un dominio especifico, se alinea conceptualmente con la estra-
tegia de surrogate modelling presente en herramientas industriales como PhysicsAl, y pone
de manifiesto las ventajas practicas de integrar modelos de ML en flujos de disefio estructural.
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3.8 Protocolos de validacion y comparabilidad

La literatura reciente insiste en la necesidad de protocolos de validacion que eviten estima-
ciones optimistas del rendimiento cuando los datos presentan correlaciones estructurales. En
problemas de vigas es comun que multiples instancias compartan geometria o tipo de apoyo.
Para garantizar comparabilidad se recomienda: validacion cruzada con agrupacion por fami-
lia geométrica o por seccion, separacion explicita entre evaluacion dentro del dominio y fuera
del dominio, por ejemplo dejando fuera un tipo de seccion completo para medir extrapolacion,
uso combinado de métricas absolutas y relativas, y normalizacién de errores por escalas fisi-
cas coherentes con la teoria de vigas. Estas pautas permiten interpretar las diferencias entre
modelos y trasladar resultados a escenarios de disefio reales.

3.9 Generalizacion y extrapolacion en modelos supervisados

Los modelos basados en arboles y las redes neuronales muestran comportamientos dife-
rentes cuando se evallan fuera del rango visto en entrenamiento. Los primeros tienden a
ser conservadores en regiones no muestreadas, mientras que las redes neuronales pueden
extrapolar suavemente si el disefio de caracteristicas esta bien alineado con la fisica del
problema. En ambos casos la incorporacién de variables fisico informadas, asi como res-
tricciones simples como monotonias esperadas, mejora la estabilidad de la extrapolacion y
atenua errores sistematicos en bordes del dominio.

3.10 Generacidén de datos y cobertura del espacio de diseno
Como los datos se obtienen por simulacién, es importante cubrir bien el espacio de disefio
para que el modelo aprenda casos variados y no solo unos pocos. Para ello se combinan tres
ideas sencillas:

* Repartir las muestras por tipos de seccién y por rangos de carga,

+ Usar un muestreo que llene uniformemente las combinaciones continuas (p. €j., latin
hypercube)

+ Anadir més casos justo donde el error del modelo es mayor (active learning).

Ademas, se documentan claramente los limites de validez del conjunto de datos y las zonas
con pocas muestras, para evitar extrapolaciones no deseadas y poder interpretar los resulta-
dos con cautela.
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3.11 Conclusion del Estado del Arte

En conclusion, cuando se dispone de datos de simulacion, los modelos supervisados son
una via eficaz para acelerar el andlisis estructural con pérdidas minimas de precision. La
combinacién de rasgos informados por la fisica con métodos robustos en datos tabulares y
con redes neuronales permite obtener predicciones fiables a muy bajo coste computacional.

La literatura coincide en cuatro buenas practicas: validar con agrupacién para evitar fugas de
informacion, distinguir con claridad los casos fuera del dominio de entrenamiento, cuantificar
la incertidumbre de las predicciones y asegurar una cobertura adecuada del espacio de dise-
fo. Con estas ideas como guia, el siguiente capitulo presenta la metodologia de este trabajo:
generacién del conjunto de datos mediante FEM, disefio de caracteristicas, y entrenamiento
y validacion comparativa de un HistGradientBoostingRegressor y de una red neuronal, junto
con los criterios de evaluacion usados para valorar su desempefio en condiciones de uso
realistas.
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Capitulo 4. METODOLOGIA

La metodologia seguida en este trabajo se estructura en una secuencia de etapas que abar-
can desde la definicion paramétrica de vigas y la generacién automatica de modelos hasta
el entrenamiento y la validaciéon de modelos de aprendizaje automatico, concluyendo con su
integracién en una aplicacion interactiva. El flujo completo comprende:

1. Disefio paramétrico de la viga y muestreo de combinaciones.
Generacion automatica de modelos en HyperMesh.

Resolucion FEM con OptiStruct.

Extraccién de respuestas desde ficheros . op2 mediante PyNastran.
Construccion y depuracién del conjunto de datos.

Preprocesado y disefio de caracteristicas.

N oo o &~ w D

Entrenamiento y validacion comparativa de un HistGradientBoostingRegressor y de una
red neuronal.

8. Seleccién de modelos y despliegue en la aplicacion Alabeam.

4.1 Generacion masiva de modelos estructurales

Dado que no se disponia de datos experimentales o historicos reales, esta fase tuvo como
objetivo la generacion de datos sintéticos que representaran el comportamiento estructural de
vigas bajo distintos escenarios de carga y geometria. Para ello se modelaron de forma tedrica
miles de vigas mediante simulaciones por elementos finitos, garantizando que los resultados
(tensiones y desplazamientos) fueran fisicamente consistentes y realistas, incluyendo tanto
configuraciones con niveles de esfuerzo admisibles como otras préximas al fallo. Este enfoque
permitid disponer de un conjunto de datos suficientemente amplio, diverso y fiable para el
entrenamiento de los modelos de aprendizaje automatico.

4.1.1. Definicion del espacio de disefo

Se defini6é un espacio de disefio que combina la geometria de la seccién, el material, la longi-
tud, las condiciones de contorno y el esquema de cargas. Los parametros se muestrearon de
forma aleatoria controlada mediante un script en Python, generando un archivo . csv maestro
con miles de combinaciones. La estrategia de muestreo se orientd a cubrir rangos realistas y
equilibrar la frecuencia de los distintos tipos de seccién y apoyo.

4.1.2. Construccion automatica en HyperMesh

La creacién de los modelos FEM se automatiz6 en HyperMesh mediante un script en TCL
que lee el .csv maestro y construye para cada fila una viga 1D en el plano XY XY. A cada
modelo se le asignan las propiedades de material y seccion, las condiciones de contorno y
las cargas correspondientes. Finalmente, cada caso se exporta en formato . fem listo para su
resolucién con Optistruct.
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4.1.3. Ejecucion FEM con OptiStruct

Los ficheros . fem se resolvieron con OptiStruct para obtener las respuestas estructurales. La
salida binaria . op2 incluye los desplazamientos, tensiones y reacciones nodales. El proceso
se ejecuto por lotes con control de errores, permitiendo detectar y reintentar automaticamente
los casos fallidos.

4.2 Extraccion de resultados y construccion del dataset

A continuacién se detalla el proceso de extraccion de resultados para posteriormente generar
el conjunto de datos para el entrenamiento.

4.2.1. Lectura de resultados con PyNastran

La lectura y el procesado de los .op2 se realizé con PyNastran. Para cada modelo se ex-
trajeron el desplazamiento méaximo y la tensién equivalente de Von Mises maxima, junto con
identificadores que permiten trazar cada muestra hasta su definicion paramétrica original.

4.2.2. Ensamblado del conjunto de datos

Se construy6 un dataset tabular que integra, para cada modelo, las entradas de disefio y las
salidas objetivo. Se llevaron a cabo verificaciones de consistencia, eliminacion de duplicados
y controles de rango.

4.3 Preprocesado y diseno de caracteristicas

Una vez obtenido el conjunto de datos, se realizan las siguientes tareas de preprocesado.

4.3.1. Limpieza y transformaciones iniciales

Antes del entrenamiento se normalizaron identificadores, se codificaron categorias y se ho-
mogenizaron unidades. Se verificd la ausencia de valores ausentes en las variables esencia-
les y se aplicaron conversiones simples cuando fue necesario.

4.3.2. Caracteristicas fisico informadas

Se incorporaron al dataset magnitudes derivadas que capturan aspectos clave del compor-
tamiento de vigas. Entre ellas se incluyen propiedades de seccion y rigidez, métricas de
esbeltez, longitudes efectivas asociadas a las condiciones de contorno y escalas fisicas de
respuesta para desplazamiento y tension. Estas caracteristicas ayudan a estabilizar la rela-
cién entrada salida y a mejorar la capacidad predictiva de los modelos.
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4.4 Entrenamiento de modelos

Finalizado el preprocesamiento del conjunto de datos se procede al entrenamiento de los
modelos como se detalla a continuacién.

4.4.1. Modelos considerados

Se entrenaron y compararon dos enfoques supervisados: un HistGradientBoostingRegressor
y una red neuronal densa de regresion. En este capitulo se presentan Unicamente el papel
de cada modelo dentro del flujo y el protocolo de validacion. Las configuraciones concretas y
sus justificaciones se detallan en el Capitulo[5

4.4.2. Esquema de validacion y particiones

Con el objetivo de obtener una estimacion robusta del rendimiento se emple6 validacion cru-
zada con agrupacién por familia geométrica y tipo de apoyo. Este esquema evita fuga de
informacién cuando existen muestras muy similares y permite evaluar el comportamiento del
modelo frente a configuraciones no vistas durante el entrenamiento. En paralelo se reservo
un conjunto de prueba estratificado para la evaluacién final.

4.4.3. Meétricas de evaluacion

Se utilizaron métricas absolutas como MAE y RMSE, el coeficiente de determinacion R? y
errores relativos normalizados por escalas fisicas de referencia. Este conjunto de métricas
facilita interpretar la precision en términos de la teoria de vigas y compara de forma homogeé-
nea ambos modelos.

4.5 Iteracion y mejora del proceso

Crear un modelo de aprendizaje automatico implica un proceso repetitivo de ajustes y me-
joras, tanto en los parametros de entrenamiento como en el tratamiento de los datos, para
lograr un mejor desempefio. A continuacion se explica el proceso que se ha seguido el trabajo.

4.5.1. Ciclo de refinamiento

El desarrollo siguié un ciclo iterativo. En una primera etapa se entrenaron modelos con un
preprocesado minimo y el rendimiento fue insuficiente. A partir de ese diagnéstico se en-
riquecieron las caracteristicas fisico informadas y se ajustaron los parametros de entrena-
miento. Tras varias iteraciones se alcanz6 un equilibrio estable entre precisidon y complejidad,
momento en el que se fijaron los modelos definitivos.
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4.5.2. Seleccion final

La seleccién se basé en el desempefio medio y en la estabilidad entre pliegues de validacion.
También se consideraron la rapidez de inferencia y la interpretabilidad practica en el contexto
de la aplicacion final. El resultado es un par de modelos listos para uso: uno basado en arbo-
les y otro neuronal, ambos con rendimiento contrastado y con configuraciones reproducibles.

4.6 Integracion en la aplicacion Alabeam

Una vez validados los modelos se integraron en una aplicacion interactiva desarrollada en
Streamlit. La interfaz permite definir rapidamente las propiedades geométricas, materiales,
apoyos y cargas, y devuelve la prediccion de desplazamiento maximo y tensioén de Von Mises
maxima. El usuario puede seleccionar qué modelo emplear en cada consulta, de modo que
se cubren necesidades de exploracion rapida y analisis mas detallado.

4.7 Reproducibilidad y control de calidad

Cada muestra del dataset mantiene un vinculo directo con su definicion paramétrica, el fichero
.fem correspondiente y el resultado .op2 del que se extrajo la informacion. Este encadena-
miento permite auditar cualquier prediccién y rehacer el flujo completo si es necesario.

Se fijaron semillas aleatorias en el muestreo y en el entrenamiento. Se registraron versio-
nes de librerias y de scripts, y se documenté el entorno de ejecucién. Este control facilita la
comparacion entre iteraciones y la replicacién de resultados.

Antes del entrenamiento se aplicaron comprobaciones automaticas de rangos y coherencia
dimensional. Durante la validacion se monitorizaron curvas de aprendizaje y mapas de erro-
res por familia de secciones y apoyos. Tras el despliegue se realizaron pruebas funcionales en
la interfaz para verificar la consistencia de las predicciones en distintos escenarios de entrada.

4.8 Resumen de la metodologia

La metodologia propuesta automatiza la generacion de miles de modelos de vigas, obtiene
respuestas FEM de referencia y construye un conjunto de datos coherente para el entrena-
miento de dos enfoques complementarios. La inclusién de caracteristicas fisico informadas
y un protocolo de validacién con agrupacion permiti6 mejorar de forma significativa el ren-
dimiento frente a los primeros intentos con preprocesado minimo. Finalmente se integraron
ambos modelos en una herramienta interactiva que habilita predicciones agiles y replicables
en el ambito del andlisis estructural.

La Figura [4.1] sintetiza el flujo de trabajo establecido por la metodologia comentada anterior-
mente.
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Figura 4.1. Metodologia del proyecto

4.9 Recursos y entorno computacional

Se empled un ordenador portatil con Intel Core i9, 32 GB de RAM y SSD de 1 TB. El flujo de
trabajo se apoy6 en Altair HyperMesh (licencia de estudiante), Altair OptiStruct, y un entorno
Python con librerias de codigo abierto (scikit-learn, TensorFlow, PyNastran, Streamlit).

El computo total aproximado fue de 24 h, distribuidas en: generaciéon de modelos FEM, resolu-
cién en OptiStruct, postprocesado con PyNastran y entrenamiento/validacion de los modelos.

4.10 Costes estimados

El coste y presupuesto estimado del proyecto se detalla en el Apéndice [Al
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Capitulo 5. DESARROLLO DEL PROYECTO

En este capitulo se detalla todo el proceso que se ha llevado a cabo para el entrenamiento de
los modelos de aprendizaje automatico y el posterior desarrollo de la herramienta Alabeam.
Todos los analisis descritos en este capitulo se ejecutaron con el entorno indicado en la
Seccién 5.2y se mantuvo el sistema de referencia de la Seccién El cédigo desarrollado
para la generacién de modelos y el entrenamiento de los modelos predictivos comentado en
esta seccion se encuentra disponible en un repositorio publico en Github, ver referencia [27].

5.1 Arquitectura general del sistema

El flujo de trabajo seguido en este proyecto se ha disefiado de forma modular, de manera que
cada componente tecnoldgico de la Seccidn cumple una funcién especifica dentro del
proceso completo, garantizando la trazabilidad y la automatizacién del conjunto. La Figura[5.1]
ilustra de forma esquematica la estructura general del sistema y la interaccion entre sus
principales bloques.

Generacion de modelos Simulacién estructural Procesamiento de datos
Altair HyperMesh Altair OptiStruct -0p2 PyNastran
Modelado y parametrizacion Resolucién FEM Extraccion de resultados
Y
Alabeam (Streamlit) Modelos ML Python
Interfaz interactiva HGBR & Red neuronal Preprocesado y feature engineering
Prediccion y visualizacion Entrenamiento y validacion Preprocesado y variables fisicas

Figura 5.1. Arquitectura general del sistema desarrollado para la aplicacién Alabeam

En primer lugar, la generacién de los modelos estructurales se realiza en Altair HyperMesh,
donde mediante scripts en lenguaje TCL se automatiza la creacion de vigas con diferentes
combinaciones de geometria, material, apoyos y cargas. Estos modelos se exportan poste-
riormente al solver Altair OptiStruct, que se encarga de resolverlos utilizando el Método de
los Elementos Finitos (MEF).

Los resultados obtenidos principalmente desplazamientos, tensiones y reacciones nodales
se almacenan en archivos binarios (.op2), los cuales son procesados automéaticamente me-
diante la libreria PyNastran. Este paso permite extraer las magnitudes relevantes de cada
simulacién y convertirlas en un formato estructurado adecuado para su analisis posterior en
Python.

Una vez recopilados los resultados, se lleva a cabo el preprocesamiento y la generacién de
nuevas variables derivadas mediante scripts en Python.

42



Prediccién Inteligente del Comportamiento Mecéanico de

Vigas usando Machine Learning y Andlisis por Elementos ue Universidad
Finitos Europea

Daniel Lépez Lépez

En esta etapa se calculan propiedades geométricas (area, momentos de inercia, médulo re-
sistente, etc.), parametros de rigidez (E1) y factores adimensionales asociados a la esbeltez
o la longitud efectiva. Este proceso constituye la base del feature engineering, que permite
optimizar la capacidad predictiva de los modelos de aprendizaje automatico.

Posteriormente, los datos preprocesados se utilizan para el entrenamiento y validacién de los
modelos desarrollados en scikit-learn, TensorFlow y Keras, concretamente un HistGradient-
BoostingRegressor y una red neuronal. Los modelos entrenados se integran finalmente en
la aplicacién Streamlit denominada Alabeam, que ofrece una interfaz interactiva en la que
el usuario puede introducir las caracteristicas de una viga y obtener instantdneamente las
predicciones de tension y desplazamiento maximos.

En resumen, la arquitectura propuesta conecta de forma secuencial las etapas de modelado,
resolucién, extraccion de datos, aprendizaje y visualizacion, permitiendo un flujo de trabajo
completamente automatizado y reproducible. La metodologia de implementacién y los deta-
lles técnicos seguira el flujo explicado en la Seccién

5.2 Entorno y versionado

A efectos de reproducibilidad, la Tabla recoge las versiones del software y librerias em-
pleadas.

Tabla 5.1. Versiones de software y librerias empleadas

Software/herramienta Version y entorno

Altair HyperMesh 2025.1 (Windows 11)

Altair OptiStruct 2025.1

PyNastran 1.4.1 (Python 3.12.3, WSL Ubuntu 22.04)
scikit-learn 1.71

TensorFlow/Keras 2.20

Streamlit 1.49.1

Compilador LaTeX TeX Live 2025 (pdfLaTeX)

5.3 Alcance y tipo de analisis
El trabajo se centra en vigas 2D en el plano XY. Esta elecciéon responde a tres motivos
principales:

» Permite acotar el problema a un dominio fisico bien conocido y con formulacién sélida.

« Facilita generar un volumen grande de simulaciones FEM con trazabilidad y control de
parametros.

+ Ofrece un banco de pruebas idéneo para demostrar que modelos de aprendizaje auto-
matico pueden aproximar con buena precision las respuestas de un solver de elemen-
tos finitos.
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Las vigas se emplean de forma generalizada en numerosos sectores industriales y constitu-
yen elementos fundamentales en practicamente cualquier tipo de construccion, permitiendo
representar y analizar una amplia variedad de escenarios estructurales. La Figura 5.2l mues-
tra una estructura reticular formada por vigas.
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Figura 5.2. Ejemplo de vigas en construccion \

Las vigas permiten aislar de forma clara la flexién en el plano y el esfuerzo axial, generar un
gran namero de simulaciones MEF y, sobre todo, disponer de magnitudes fisico informadas
(como E1, W,, Lg 0 escalas del tipo sz/EI) que se incorporan de manera directa al feature
engineering (ver Seccién [2.1.2).

En este marco, se adopta un sistema de coordenadas en el que el eje X coincide con el eje
longitudinal de la viga, el eje Y es transversal dentro del plano y el eje Z emerge del plano.
Las cargas consideradas son fuerzas puntuales en X e Y y momentos alrededor de Z (ver
Seccion [2.1.1); las condiciones de contorno incluyen configuraciones tipicas como biapoya-
da, empotrada, empotrada—articulada y voladizo, modelando la longitud efectiva mediante un
factor K acorde a cada caso. Se supone un comportamiento lineal elastico e is6tropo, en
régimen estatico y de pequefas deformaciones, y se discretiza con elementos 1D de viga
con grados de libertad (u, v, 8,) por nodo, lo que permite mallas muy eficientes manteniendo
la fidelidad en las respuestas de interés.

El propésito es demostrar que modelos de aprendizaje automatico pueden aproximar con
buena precision salidas de referencia obtenidas con un solver de elementos finitos en un
dominio fisico acotado y bien interpretado. Concretamente, a partir de combinaciones de
entradas geométricas, de material, de contorno y de carga, se buscan predicciones del des-
plazamiento maximo wy,sx en la direccion Y y de la tensién de Von Mises maxima oy, 4.
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El objetivo no es sustituir el analisis MEF general, sino evidenciar su aceleracién cuando el
problema esta bien parametrizado y el modelo se entrena dentro de un espacio de disefio
adecuadamente muestreado. Quedan fuera de alcance fenémenos como la dindmica tran-
sitoria, la no linealidad geométrica o material, el pandeo no lineal global, el contacto y los
modelos 3D de sélido, que se consideran lineas futuras razonables una vez consolidada la
metodologia en vigas 2D.

5.4 Generacién de modelos de vigas

El conjunto de casos MEF se genera restringiendo el problema al plano XY y limitando las
condiciones de contorno a los extremos de la viga. Esta decisién reduce de forma drastica
el nimero de combinaciones necesarias manteniendo la riqueza fisica suficiente para entre-
nar y validar modelos predictivos. Todas las longitudes, cargas y propiedades se expresan
siguiendo un sistema de unidades coherente definido en la Seccién|2.1.1

Dominio geométrico La longitud libre L de la viga se define en el intervalo [150, 5000] mm,
albergando asi los casos mas comunes de longitud de vigas. Se consideran cinco familias de
secciones transversales: circular maciza, circular hueca (tubo), rectangular maciza, rectan-
gular hueca y perfil en I. Cada seccion se define por sus dimensiones minimas necesarias
(radio/diametros en circulares; ancho, canto y espesores en rectangulares e 1), garantizando
geometrias fisicamente realizables (espesores positivos y relaciones internas < externas).

| Dim2

Circular (Rod) Circular hueca (Tube) Rectangular (Bar)
Dim3
\ L] [ |
} ¢ |
Ay ° \
£ E
T O It - ]
Dim4 im:
| u
u e [
AN .
{ £
" Dim1 e I
‘ U ! |
| | Dim2
Rectangular hueca (Box) Perfil en |

Figura 5.3. Familias de secciones transversales consideradas
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En la Fig.[5.3]se ilustran las cinco familias de secciones utilizadas junto con sus dimensiones
geométricas basicas. Para mantener la coherencia con el entorno de modelado y los scripts
de generacion, dichas dimensiones se han nombrado siguiendo la convencién de HyperMesh
como Dim1-Dimé. La Tabla [5.2) recoge la correspondencia entre cada Dim y la magnitud
geométrica especifica en cada tipo de seccién, de modo que la misma notacién se utiliza de
forma consistente en la generacion de modelos, el preprocesado y el postprocesado.

Tabla 5.2. Equivalencias Dim1-Dim6 (formato HyperMesh).

Seccion D1 D2 D3 D4 D5 D6
Circular Radio — — — — —
Circular hueca Radio ext. Radio int. — — — —
Rectangular Ancho Alto — — — —
Rectangular hueca Ancho Alto Esp. vertical Esp. horizontal — —
| Alto Ancho ala inf. Ancho ala sup. Esp. alma Esp. ala inf. Esp. ala sup.

Materiales Se emplean materiales metalicos habituales en estructuras: acero al carbono,
acero inoxidable, aluminio y titanio, modelados como lineales elasticos e is6tropos. La Ta-
bla resume las propiedades utilizadas en el muestreo (médulo de elasticidad FE, coefi-
ciente de Poisson v, densidad p en kgmm~3 y limite elastico o, en MPa).

Tabla 5.3. Propiedades mecanicas de materiales empleados

Material E[MPa] v[] plkg/mm3] o, [MPa]
Acero 210000 0.30 7.8x 1076 370
Acero inoxidable 210000 0.30 7.9 x 10~ 170
Aluminio 70000 0.32 2.7x10°° 270
Titanio 120000 0.32 4.5x 1076 830

Condiciones de contorno Se consideraron dos tipos de restriccién: empotramiento, que
bloguea todos los grados de libertad del nodo (u,v,6.), y apoyo simple (articulacién), que
impide el desplazamiento en el punto de apoyo pero permite el giro. Para simplificar y evi-
tar mecanismos, las restricciones so6lo se aplican en los extremos de la viga y se descar-
tan combinaciones del tipo “simple—libre”. Con ello, las configuraciones validas son: voladizo
(empotramiento—libre), biapoyada (simple—simple) y mixta (empotramiento—simple o simple—
empotramiento), tratadas como equivalentes a biapoyada a efectos de longitud efectiva. Estas
configuraciones se utilizan también para fijar el factor K de longitud efectiva cuando procede

(véase Tabla [2.2).

Cargas y casos de carga Cada modelo admite hasta tres acciones puntuales en total, com-
binando: fuerzas en X (axiales: traccién/compresion), fuerzas en Y (transversales: flexion en
el plano) y momentos alrededor de Z (pares flectores en el plano). Las fuerzas puntuales y
momentos se aplican en posiciones internas = € (0, L). Se adopta un convenio de signos
coherente con el sistema de ejes descrito en la Seccién [2.1.1
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Para garantizar casos fisicamente coherentes y Utiles para el entrenamiento, la generacion
aplica controles en tres niveles.

+ Validez geométrica: se imponen espesores positivos en secciones huecas (con D; <
D,), altura de alma positiva en perfiles en | (h,, > 0) y no inversién ala/alma; ademas,
se filtran combinaciones con momentos de inercia 0 médulos resistentes no vélidos
(I <0, S <0)y se acotan esbelteces extremas.

+ Condiciones de contorno: sélo se permiten restricciones en los extremos y se descar-
tan configuraciones con mecanismos (p. €j., simple—libre), asegurando que no queden
grados de libertad sin restringir.

« Sintesis de cargas: para cada viga se genera una carga dominante que sitda la tensién
maxima objetivo en el entorno del limite elastico, muestreando &£ con sesgo hacia el
rango subcritico [0.8,1.0] y una fraccién en [1.0,1.2], de modo que Otarget = koy Y
Miarget = otarget S. Con esto se logra asegurar que hay casos con tensiones cercanas
al limite elastico e incluso algunos que lo superan.

A partir de Miarget, S€ calcula una fuerza puntual o un momento equivalente (segin el tipo de
apoyo y la posicién), y se evalla una estimacién conservadora de la flecha §. La magnitud de
la carga se ajusta iterativamente hasta cumplir una ventana de servicio 6 € [0.01 L, 0.10 L]
(reducciones x0.85 o incrementos x1.15 con intentos acotados), si no es factible, el caso
se descarta. Para evitar casos demasiado “limpios” o triviales, se afiaden hasta dos cargas
secundarias de pequefa entidad (2-12 % de la dominante) con posiciones internas mues-
treadas en [0.1 L, 0.9 L] y ligeras perturbaciones en cuartos/tercios, limitando el total a tres
cargas. Se evita aplicar cargas a menos de 10 mm de los extremos. Los modelos no con-
vergentes 0 con respuestas anébmalas se marcan para reintento y, en su caso, se descartan
antes del preprocesado. La trazabilidad se garantiza mediante nombres de caso y un CSV
maestro que codifica entradas, restricciones y cargas generadas.

5.4.1. Modelado en HyperMesh/OptiStruct

Las vigas se han modelado en HyperMesh empleando elementos 1D CBEAM con propiedad
PBEAML, que permite definir la geometria de la seccion (circular, tubo, rectangular, cajon
o perfil en I) de forma paramétrica y coherente con la convencion Dim1-Dim6 descrita pre-
viamente. Cada CBEAM dispone de seis GDL clasicos por nodo (u, uy, u,,0,,0,,6.); en el
planteamiento 2D el eje del elemento coincide con X vy la flexion se produce en el plano XY
(momento alrededor de 7). La orientacién local del elemento se fija mediante el vector de
offset de direccion (tercer y cuarto campo del CBEAM), asegurando que el eje fuerte quede
alineado con Y.

Las condiciones de contorno se imponen con tarjetas SPC (Single Point Constraint). El apoyo
simple se representa restringiendo las tres traslaciones (123) y dejando libres las rotaciones,
mientras que el empotramiento fija los seis GDL (123456). Las cargas se aplican con FOR-
CE (componentes en X o0 Y) y MOMENT (alrededor de Z), ubicadas en nodos interiores o
extremos segun el caso.
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En case control se activan los resultados necesarios en formato OP2: DISPLACEMENT, SPC-
FORCE y STRESS, que posteriormente se extraen con PyNastran para obtener el desplaza-
miento maximo (wn4x) y la tension maxima (ovm,max)-

El OP2 es un fichero binario de resultados (formato Nastran/OptiStruct) que almacena, por
cada caso de carga (subcase) y paso de carga/tiempo, tablas de magnitudes postproceso en
registros no formateados (Fortran). Es compacto y rapido de leer, pero no es legible a simple
vista: requiere un lector especifico (p.ej., PyNastran). Entre las tablas habituales estan los
desplazamientos nodales (OUG*), tensiones/esfuerzos en elementos (OES*), fuerzas de ele-
mentos (OEF*) y fuerzas de reaccion (OQG*/SPCFORCE). Cada registro referencia IDs de
nodos/elementos y puede venir en sistemas de coordenadas globales o locales, por lo que
es importante mantener la consistencia de ejes. En el case control se solicitaron DISPLA-
CEMENT, STRESS y SPCFORCE en OP2; posteriormente, PyNastran extrae de las tablas
correspondientes wmax Y 0vM,max, junto con verificaciones de integridad (subcases, unidades
y mapeo de IDs).

La malla de elementos se genera dividiendo la longitud L en elementos uniformes (tipica-
mente del orden de decenas de milimetros) para capturar con estabilidad la respuesta de
flexion sin coste excesivo. Las propiedades de seccion se asignan con PBEAML seleccionan-
do el tipo segun la denominacion en HyperMesh (ROD, TUBE, BAR, BOX, I) y los parametros
geométricos correspondientes, el material se define con MAT1 (médulo FE, v y densidad),
siguiendo el sistema de unidades {mm, N, MPa}.

Ejemplo practico A modo de ejemplo, se toma una viga tubular de L = 1000 mm en ti-
tanio con apoyo simple en ambos extremos mallada con 100 elementos CBEAM uniformes
entre los nodos extremos (representada en la Figura[5.4). La seccién se definié con PBEAML,
TUBE indicando diametro exterior e interior; las restricciones se aplicaron con SPC tipo 123
en los extremos (permitiendo giro), y se prescribié una acciéon mediante MOMENT alrededor
de Z en un nodo interior. En case control se activaron DISPLACEMENT(OUTPUT2), SPC-
FORCE(OUTPUTZ2) y STRESS(OP2,ALL) para volcar desplazamientos y tensiones al fichero
binario .op2. Este patrdn es representativo del resto de casos generados de forma automati-
ca.

Figura 5.4. Viga de titanio modelada en HyperMesh
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5.4.2. Generacion automatica del fichero CSV de casos

La automatizacion comienza con un script en Python que construye un fichero CSV maes-
tro con todos los casos a simular. Este fichero sera leido por el script TCL de HyperMesh
para generar los modelos .MEF de manera desatendida. El CSV define, por fila, la longitud
de la viga, el tipo de seccion y sus dimensiones segun la convencién Dim1-Dim6, el mate-
rial con sus propiedades bésicas, la configuracién de apoyos en los extremos y hasta tres
acciones puntuales o pares en posiciones internas. Se afiade un esquema de nombres de
caso que permite trazar cada modelo desde la generacién hasta el postproceso, por ejemplo,
Beam TUBE 4900mm_simple _simple_Titanium (seccion tubular, L = 4900 mm, biapoyada
y material titanio).

Como se menciond previamente, para cada combinacién valida, el script sintetiza un caso
de carga dominante con el objetivo de situar la tensién maxima cerca del limite elastico sin
exceder ventanas de servicio en flecha. Para ello se selecciona un factor £ sesgado hacia
el intervalo subcritico 0.8-1.0 y con una fraccion en 1.0-1.2, se fija un objetivo de tension
otarget = k 0y, y se convierte en un objetivo de momento Miarget = Ttarget S Mediante el modu-
lo resistente .S de la seccién. En funcién de la configuracién de apoyos y de la posicion interna
elegida, Miarget Se traduce a una fuerza o a un momento aplicado. Con una estimacion con-
servadora de flecha, el script ajusta iterativamente la magnitud para que el desplazamiento
maximo quede dentro de un intervalo relativo respecto a la longitud, tipicamente entre 0.01 L
y 0.10 L. Si no es posible cumplir simultaneamente los criterios de tension y flecha, el caso
se descarta.

El procedimiento registra en fromato CSV (Comma Separated Values), ademas del nombre
del modelo y los parametros geométricos y de material, el tipo y direccion de cada carga, su
magnitud en N o N-mm y su posicién en mm. El ejemplo mostrado en la Tabla[5.4]ilustra una
fila de salida con una viga circular maciza de 150 mm en acero, en voladizo, con un momento
alrededor de Z aplicado en una posicién interna:
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Tabla 5.4. Ejemplo de una fila del CSV mostrado en formato vertical para facilitar su lectura

Campo Valor
model_name Beam_ROD_150mm_clamped_None_Steel
L [mm] 150
section_type ROD

dim1, dim2, dim3 40.89, 0, 0
dim4, dim5, dim6 0,00
material Steel

E [MPa] 210000

nu [-] 0.3

density [N/mm?3] 7.8e-06
yield_strength [MPa] 370

support_L, support_R clamped, None
num_cargas 1

cl_type moment

cl1_dir Z

c1_mag [N-mm] -5429301.16
c1_pos [mm] 75.0

c2 * —

c3 * —

El c4digo completo del generador de CSV se incluye en los apéndices y se referencia en el
texto principal para facilitar la reproduccion. Se recomienda fijar una semilla aleatoria cuando
se requiera repetibilidad exacta del conjunto de casos.

5.4.3. Automatizacion en HyperMesh con TCL

El proceso de creacién masiva de modelos se ejecuta con un script TCL que lee el CSV
maestro y construye, para cada fila, un modelo .hm y su correspondiente .MEF listo para
OptiStruct. El script trabaja en modo desatendido: borra el modelo activo, crea materiales,
propiedades y secciones, mallado 1D, condiciones de contorno, cargas, caso de carga y
opciones de salida, y finalmente exporta el input deck del solver Optistruct.

El flujo interno es el siguiente. Primero abre el CSV en UTF-8 y salta el encabezado. De
cada linea extrae nombre del modelo, longitud, tipo de seccién y dimensiones, material y
propiedades basicas, configuracién de apoyos y hasta tres acciones. Con esos datos crea
el material MAT1 y una propiedad PBEAML asociada. La seccién se define con una entidad
beamsection y se parametriza segun el tipo: ROD usa una dimensién, TUBE dos, BAR dos,
BOX cuatro, e | hasta seis. Para TUBE, BOX e | se incluyen validaciones basicas de geometria
para evitar combinaciones no fisicas.

La geometria se genera como una linea entre el origen y la longitud L. El mallado lineal se
hace con un tamario L/100, lo que produce del orden de un centenar de elementos por viga y
asegura una resolucion suficiente en flexion sin coste excesivo.
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La orientacion local del elemento se fija con un vector de referencia para mantener el eje
fuerte en el plano XY. En perfiles | se usa una orientacion alternativa para alinear alma y alas
de forma coherente.

Las condiciones de contorno se agrupan en un load collector SPC. Para un apoyo simple se
restringen las tres traslaciones en el nodo extremo y se dejan libres las rotaciones, para un
empotramiento se fijan todos los grados de libertad. La identificacion de los nodos extremos
se realiza mediante cajas de seleccién alrededor de x = 0 y x = L con una tolerancia delta
proporcional a L. Las cargas externas se incorporan desde el CSV recorriendo hasta tres
posibles registros. Cada una define tipo, direccion, magnitud y posicion a lo largo de la viga.
El script localiza el nodo mas cercano a la posicion indicada y aplica, en funcién del tipo, una
fuerza en X 0 Y o un par alrededor de Z.

A continuacién se crea un loadstep estatico con los load collectors de SPC y cargas activos.
En case control se habilitan desplazamientos, fuerzas de restriccidn y tensiones para salida
binaria OP2, que mas adelante se leera con PyNastran. El modelo se guarda como .hmy se
exporta a .fem usando la plantilla de OptiStruct configurada en la ruta optistruct template. Si
la plantilla no existe, se informa por consola.

El script usa codificacién UTF-8 para leer el CSV y separa por comas, si los nombres de
modelo o materiales contienen comas, conviene entrecomillar esos campos en el CSV. La
tolerancia delta para localizar nodos puede ajustarse en funciéon de la densidad de malla.
El tamafio de elemento L/100 es un compromiso entre coste y precision, para cargas muy
localizadas se puede reducir. La gestion de combinaciones de apoyos excluye mecanismos
y normaliza la etiqueta None en el extremo libre. Las magnitudes de las cargas se asumen
en N para fuerzas y N-mm para momentos, coherentes con el sistema de unidades (Seccién

Ridl

El script completo, con comentarios y rutas parametrizables de entrada y salida, se incluye en
el apéndice y puede referenciarse como Apéndice B.1] Para reproducibilidad, se recomienda
fijar una convencion estable de nombres de modelo y conservar junto a cada .MEF su .hmy
la fila original del CSV.

5.4.4. Extraccion de resultados OP2 con PyNastran y construccion del dataset

Tras la ejecucién de todos los modelos en el solver OptiStruct, los resultados se almacenan
en ficheros OP2 binarios. Para consolidar la informacién en un Unico dataset tabular se em-
plea un script en Python basado en PyNastran que recorre la carpeta de resultados, lee cada
OP2 y extrae, por modelo, el desplazamiento nodal maximo y una medida de tensién maxima
representativa (Von Mises). Finalmente, estos valores se unen al CSV de entrada que conte-
nia las caracteristicas geométricas, de material, apoyos y cargas, de forma que se obtiene un
Unico fichero con entradas y objetivos de aprendizaje.

PyNastran permite acceder a tablas de desplazamientos nodales (familia OUG), tensiones en
elementos de barra y viga (familia OES) y fuerzas en restricciones (SPCFORCE). En cada
OP2 se carga el primer subcase estatico y se calcula el desplazamiento maximo como la
norma euclidea de los vectores de desplazamiento nodal.
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Para la tension se emplea la salida de tensiones de elementos CBEAM que proporciona
tensiones principales por fibra. Se toma como proxy de tension maxima la mayor entre las
dos tensiones principales en cada elemento y fibra y luego el maximo global del modelo. Esto
es consistente con la identificacién de la zona mas critica bajo flexién y cubre tanto traccién
como compresion, ya que se usa el valor absoluto.

Consistencia de unidades y ejes. Los desplazamientos salen en milimetros y las tensiones
en MPa, coherentes con el sistema {mm, N, MPa} definido en el proyecto. Las tablas pueden
venir en ejes globales o locales segun configuracion del caso de carga. Con los elementos 1D
CBEAM y el case control empleado, las magnitudes recuperadas se interpretan en el sistema
global, por lo que no se requieren transformaciones adicionales.

Combinado con el CSV de entrada. Para construir el dataset final se crea una tabla intermedia
con las columnas model_name, max_displacement (desplazamiento maximo) y max_stress
(tensiéon maxima) extraidas de cada OP2 y se realiza una unién interna con el CSV original de
generacion por la clave model_name. El resultado contiene, por fila, todas las caracteristicas
de entrada mas los objetivos para aprendizaje supervisado.

El script contempla que alguna tabla no esté presente y devuelve nulos en ese caso. Si un
OP2 no puede leerse o el modelo no converge, se omite su fila. Es recomendable registrar el
numero de OP2 procesados, los que aportan desplazamientos, los que aportan tensiones y
los no procesados, para asegurar trazabilidad. En total se generaron 4075 modelos y fueron
descartados 17, quedando finalmente un dataset con 4058 modelos para entrenar.

Las columnas afadidas al dataset se muestran en la Tabla 5.5} incluyendo las variables ob-
jetivo de desplazamiento y tensién como columnas nuevas, ademas de las ya presentes en
el CSV de entrada:

Tabla 5.5. Salidas extraidas por PyNastran e incorporadas al dataset final.

Columna Descripcion
max_displacement Desplazamiento nodal maximo del modelo en mm
max_stress Tension maxima tomada como envolvente de principales

en elementos CBEAM (Von Mises), en MPa

El cédigo completo de extraccién y combinacion con Pandas se incluye en el apéndice y
puede referenciarse como Apéndice

5.5 Preprocesado del conjunto de datos

El conjunto de datos en bruto relne, para cada viga, su geometria, material, configuracién
de apoyos, hasta tres cargas puntuales o momentos y los resultados MEF relevantes. El
proposito del preprocesado es transformar esa informacioén en un conjunto de caracteristicas
numéricas estables, con sentido fisico y adecuadas para el aprendizaje supervisado, de modo
que los modelos reduzcan varianza y mejoren su capacidad de generalizacion.
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5.5.1. Cargay utilidades numéricas

Se lee el CSV original y se define una division segura safe_div(a, b, €) con un épsilon
pequeno para evitar divisiones por cero o por valores muy proximos a cero. Esta precaucién
es necesaria cuando se normaliza por areas pequefias, modulos resistentes o rigideces.

5.5.2. Propiedades de seccidn por tipologia

Para cada tipo de seccion se calculan de forma cerrada el area A, el momento de inercia
respecto al eje de flexion I, el médulo resistente W, = I,/c y una aproximacién de la
inercia torsional J. Se contemplan las cinco familias de secciones empleadas en el trabajo:
rectangular maciza, rectangular hueca, circular maciza, tubular circular y perfil en . En el perfil
en | se compone I, con el teorema de ejes paralelos sumando alma y alas. En las secciones
huecas se verifica que los espesores efectivos sean positivos.

5.5.3. Rigidez y esbeltez

Se generan magnitudes clasicas de vigas que guian el aprendizaje: la rigidez a flexion EI =
E I, el radio de giro r, = /1. /Ay razones como L/r, o L?/EI. Estas variables aparecen
en formulas de flecha y tensiones y aportan una base fisica a las relaciones que el modelo
debe capturar.

5.5.4. Longitud efectiva y factor K

Se calcula la longitud efectiva Lef = K L, donde K depende de los apoyos. Se utilizan
los valores habituales: K = 2,0 para voladizo, K = 1,0 para biapoyada, K = 0,5 para
doble empotramiento y K = 0,7 para empotrada—articulada. Ademas se afiaden potencias e
interacciones de Legg que son especialmente informativas para el desplazamiento.

5.5.5. Agregacion de cargas y magnitudes equivalentes

Las cargas aplicadas en las vigas se condensan en agregados con significado fisico:

» Resultantes FXiotal Y FYiotal-
* Momento acumulado respecto al extremo izquierdo MZipta jeft-

 Un sustituto del momento flector maximo Mnayx sss basado en expresiones de viga sim-
plemente apoyada. Para una fuerza puntual P aplicada a distancia a, se aproxima
Mmax = P a(L — a)/L. Los momentos aplicados contribuyen con su magnitud.

Se normalizan ademas las posiciones de aplicacion de las cargas como fraccion de la longi-
tud, /L, para disminuir sensibilidad a la escala absoluta.
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5.5.6. Escalas fisicas para tensiones y flechas

Se construyen dos escalas guia que anclan el orden de magnitud:

o Mmax,sss o FYiotal L?
Oscale = Ta 5scale = T
z

Para reflejar el efecto de los apoyos se incluyen versiones con longitud efectiva, por ejemplo
Oscale.eff = F Yiotal Lgff /E1I, asi como intensidades de carga FYotai/L Y MZiotay jeit/ L-

5.5.7. Interacciones y transformaciones estabilizadoras

Se afnaden interacciones entre escalas relevantes y combinaciones polinémicas centradas en
el desplazamiento, como Lgﬁ/EI, Lgﬁ/EI y productos con Leg. Para mitigar heterogeneidad
y atipicos moderados se aplican transformaciones logaritmicas estables log(1 + x) sobre
magnitudes positivas o en valor absoluto, por ejemplo log E1, log Legt, 10g dscale Y 10g Tscale-

5.5.8. Control de calidad y salida

Durante el célculo se incluyen comprobaciones geométricas y numéricas: se asegura D; <
D, entubos, se aplican épsilon en denominadores y se recortan combinaciones incoherentes.
El resultado es un CSV con un subconjunto ordenado de columnas que se usa directamente
en el entrenamiento.

5.5.9. Impacto del preprocesado en las métricas

Los andlisis iniciales con variables crudas arrojaron errores elevados por mezcla de escalas,
ausencia de rasgos fisico informados y sensibilidad a posiciones absolutas. Tras introducir
FEI, Le, razones como Lg’ff /E1 y escalas ogcale Y Oscale, €l aprendizaje se alinea con la teoria
de vigas. En la practica, los modelos ajustan correcciones alrededor de relaciones ya apro-
ximadas y se observa una reduccién del error y una mejora de la generalizacion frente a
combinaciones no vistas exactamente en el entrenamiento.

5.6 Entrenamiento con HistGradientBoostingRegressor

Este apartado describe el procedimiento seguido para entrenar modelos de regresién basa-
dos en HistGradientBoostingRegressor (HGBR) para dos objetivos independientes: desplaza-
miento maximo y tensién de Von Mises maxima. El flujo implementa carga de datos, seleccion
de rasgos numeéricos, particionado entrenamiento prueba, ajuste del modelo, evaluacién con
métricas estandar y persistencia del modelo entrenado para su uso posterior en la aplicacion.

El uso de HGBR es adecuado en datos tabulares con relaciones no lineales moderadas e
interacciones entre variables. La discretizacién en histogramas acelera el ajuste y aporta re-
gularizacion adicional, lo que ayuda a estabilizar el aprendizaje con rasgos fisico informados.
En este proyecto se observd una mejora sustancial de las métricas frente a modelos entrena-
dos sobre variables crudas, en linea con lo esperado cuando se incorporan escalas y razones
derivadas de la teoria de vigas.
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5.6.1. Datos de entrada y seleccion de rasgos

Se parte del CSV preprocesado y se filtran las columnas candidatas definidas en la configura-
cién del proyecto, restringiéndolas a variables numéricas disponibles. Las matrices de entrada
X se completan con ceros en valores ausentes, y se crean dos vectores objetivo y: uno para
max_displacement (desplazamiento maximo) y otro para max_stress (tensiébn maxima). El
conjunto de rasgos finales coincide con la lista de caracteristicas fisico informadas resultante
del preprocesado. Las variables objetivo se mantuvieron sin transformar con el fin de evitar
posibles problemas en la fase de prediccion y facilitar la interpretacion de los resultados.

5.6.2. Particionado y estabilidad numérica

Cada objetivo se entrena de forma independiente aplicando una particién aleatoria entrena-
miento prueba con proporcion fijada en la configuracién (30 %) y semilla reproducible (42).

5.6.3. Ajuste del modelo y prediccion

Para cada objetivo se instancia un HGBR con los hiperparametros definidos en la configura-
cién del proyecto y se ajusta con los datos de entrenamiento. A continuacion se predicen las
respuestas sobre el subconjunto de prueba.

5.6.4. Meétricas de evaluacion

Se evalla el rendimiento en el conjunto de prueba con las métricas habituales: coeficiente de
determinacion R?, error absoluto medio (MAE) y error absoluto mediano (MedAE). Adicional-
mente se reportan los tamarios de entrenamiento y prueba para contextualizar los resultados.

5.6.5. Importancia de rasgos y diagnéstico

Para facilitar la interpretacion se calculan dos medidas de importancia:
+ Importancia por ganancia media a partir de un modelo auxiliar Random Forest entrena-
do sobre el mismo conjunto de entrenamiento.
« Importancia por permutacion, calculada sobre el conjunto de prueba para el HGBR vy

resumida en las diez caracteristicas mas influyentes.

Estas medidas permiten verificar que el modelo se apoya en variables con sentido fisico como
EI, Leg, escalas de flecha del tipo L3;/ET y modulos resistentes W, entre otras.
5.6.6. Persistencia y trazabilidad

Cada modelo entrenado se guarda en local junto con las caracteristicas usadas. Esto garan-
tiza que, en inferencia, la aplicacién cargue exactamente la misma configuracion de rasgos
que se empled en entrenamiento, evitando desviaciones entre fases.
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5.6.7. Resultados en el conjunto de prueba

Los resultados del modelo final se evaluaron utilizando el conjunto de prueba, obtenido al
dividir el conjunto total de datos en un 70 % para entrenamiento y un 30 % para validacién del
rendimiento del modelo. La Tabla[5.6] muestra las métricas obtenidas.

Tabla 5.6. Rendimiento del HGBR en el conjunto de prueba. El desplazamiento estd en mm y la tensién en MPa.

target R2 MAE MedAE n_train n_test

max_displacement 0.843 11.6189 2.67829 2839 1218
max_stress 0.960 36.7916 14.1722 2839 1218

Los resultados muestran un ajuste muy alto para la tensién maxima y un rendimiento sélido
para el desplazamiento. Es habitual que el desplazamiento resulte mas dificil de predecir
porque depende con mayor sensibilidad de la posicion relativa de las cargas y de la longitud
efectiva, mientras que la tensién se ancla bien a escalas basadas en el médulo resistente y
en sustitutos del momento maximo.

5.6.8. Importancia de caracteristicas

A continuacién se resumen las diez caracteristicas mas influyentes segun dos enfoques com-
plementarios: un Random Forest auxiliar entrenado sobre el mismo conjunto de entrenamien-
to (importancia por ganancia, Tabla y[5.9), y la importancia por permutacién calculada
sobre el conjunto de prueba para el propio HGBR, ver Tabla[5.8]y[5.70] Se observan patrones
coherentes con la teoria de vigas: para el desplazamiento destacan combinaciones que in-
cluyen L.g y escalas de tipo L?/EI o L*/EI, mientras que para la tensién domina la escala
o inducida por el momento sobre el médulo resistente.

Tabla 5.7. Top-10 importancia de caracteristicas con Random Forest auxiliar para max_displacement

feature importance (RF)
sigma_scale_L_effective_squared 0.296539
sigma_delta_effective_interaction 0.110485
L_effective_squared_L_over_rz 0.069631
L_effective_4 over_EI 0.062302
normalized_load 0.034780
moment_over_stiffness 0.031084
delta_scale_effective 0.030350
log_delta_scale 0.027441
Iz_over_A2 0.021235
J_over_ A 0.018755
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Tabla 5.8. Top-10 importancia por permutacién para max_displacement

feature importance (permutation)
sigma_scale_L_effective_squared 0.490651
sigma_delta_effective_interaction 0.061058
L_effective_squared_L_over_rz 0.004851
L_effective_4 over_El 0.032919
normalized_load 0.000000
moment_over_stiffness 0.052159
delta_scale_effective 0.019375
log_delta_scale 0.017604
I1z_over_A2 0.083135
J_over A 0.007130

Tabla 5.9. Top-10 importancia de caracteristicas con Random Forest auxiliar para max_stress

feature importance (RF)
log_sigma_scale 0.816521
Iz_over A2 0.042763
sigma_delta_effective_interaction 0.035271
sigma_scale 0.011597
sigma_delta_interaction 0.006522
load_over_stiffness 0.005669
K_factor_squared 0.005457
K_factor_cubed 0.005354
K_factor 0.005180
load_intensity 0.004783

Tabla 5.10. Top-10 importancia por permutacién para max_stress

feature importance (permutation)
log_sigma_scale 1.713227
Iz_over_A2 0.068850
sigma_delta_effective_interaction 0.107981
sigma_scale 0.003374
sigma_delta_interaction 0.001788
load_over_stiffness 0.003760
K_factor_squared 0.042617
K_factor_cubed 0.000000
K_factor 0.000000
load_intensity 0.001911

En conjunto, la importancia aprendida por el modelo coincide con las escalas fisicas que
gobiernan el problema. En tensién, la dominancia de log_sigma_scale y de razones geomé-
tricas normalizadas como Iz_over_A2 es consistente con que o se ancla en el momento y
el médulo resistente. En desplazamiento, la relevancia de combinaciones con L.g y con §
escala la respuesta con L3/E1T y explica la sensibilidad a las condiciones de apoyo y a la
posicion de cargas. Esta alineacién mejora la interpretacion de los resultados y favorece la
generalizacion.
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5.6.9. Conclusion HGBR

El modelo puede considerarse finalizado, ya que en la ultima iteraciéon de entrenamiento se
obtuvieron métricas satisfactorias para ambas variables objetivo, como se muestra en la Ta-
blab.6l

Para el modelo de desplazamientos maximos se alcanzé un coeficiente de determinacion
R? = 0.843 y un error medio absoluto de 11.62 mm. Ademas, el error absoluto mediano fue
de 2.678 mm, lo que indica que el 50 % de las predicciones presentan un error inferior a dicho
valor. Considerando estos resultados, el modelo de desplazamientos puede calificarse como
aceptable, ya que los errores obtenidos son bajos en relacién con el objetivo de estimar el
desplazamiento méaximo en vigas.

En cuanto a las tensiones maximas, se obtuvo un coeficiente de determinacién R? = 0.960
y un error medio absoluto de 36.79 MPa. El error absoluto mediano fue de 14.17MPa, lo
que implica que la mitad de las predicciones presentan un error inferior a este valor. Estos
resultados son muy satisfactorios, especialmente si se compara con el limite elastico de los
materiales empleados como el aluminio, con una resistencia de 270 MPa.

Por dltimo, los modelos entrenados se guardaron como artefactos independientes en formato
joblib, uno por cada variable objetivo: model_max_displacement_HGB. joblib ymodel_ma
x_stress_HGB. joblib. Esta separacion permite seleccionarlos desde la interfaz Alabeam
segun la prediccion requerida, reducir el tiempo y la memoria de carga al utilizar solo el
predictor necesario, y facilitar su mantenimiento al poder actualizar cada archivo de forma
aislada sin afectar al resto del sistema.

5.7 Entrenamiento de la red neuronal

La red neuronal se entrena a partir del conjunto de datos ya preprocesado (Seccién[5.5), con
dos objetivos independientes: max_displacement (desplazamiento maximo) y max_stress
(tensiéon maxima). El propio script construye la matriz de caracteristicas excluyendo identifi-
cadores y campos categéricos crudos (model_name, section_type, material, support_L,
support_R), convierte todo a float32 y sustituye valores no validos (NaN, +oo) por 0.0,
lo que permite entrenar con datos reales donde algunas magnitudes pueden no aplicar en
ciertos casos. Esta preparacién se implementa en la funcién safe_prepare_features del
fichero de entrenamiento de la red neuronal.

Para evaluar con rigor, el conjunto de datos se divide de forma reproducible en tres parti-
ciones: prueba (30 %), validacién (20 % de la parte restante) y entrenamiento. Se fija una
semilla global (42) para NumPy y TensorFlow, de modo que los resultados sean repetibles
(DEFAULT_RANDOM_STATE=42). Antes de entrenar se estandarizan las caracteristicas con
StandardScaler con el que se obtienen los mejores resultados (también se probaron alter-
nativas como MinMax, Robust 0 PowerTransformer), guardando posteriormente el escalador
y la lista de columnas utilizadas para asegurar su uso idéntico en despliegue.

El script ofrece tres arquitecturas densas en Keras. Las variantes simple y medium usan
bloques densos con activacién RelLU, normalizacion por lotes y abandono, ademas de regu-
larizacion L2 en los pesos.
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En concreto, la opcion simple emplea capas de 64 y 32 neuronas con abandonos de 0.30
y 0.20, mientras que medium amplia la capacidad con 128, 64 y 32 neuronas y abandonos
de 0.35y 0.25. La arquitectura ultimate sigue un disefio en paralelo con tres caminos: uno
profundo (64—-32—-16), otro ancho (128-32) y un bloque residual ligero (64—64 con salto), que
se concatenan y pasan por capas finales de 32 y 16 neuronas antes de la salida escalar.
Este esquema busca capturar relaciones de distinta complejidad sin disparar el nimero de
parametros y mostré buen compromiso entre sesgo y varianza en los ensayos.

El plan de optimizacion utiliza el optimizador Adam y una funcién de pérdida Huber, adecuada
cuando puede haber valores atipicos moderados. Para estabilizar y acelerar la convergencia
se combinan varias rutinas: parada temprana con restauraciéon de los mejores pesos, re-
duccién automatica de la tasa de aprendizaje al estancarse la validacién y un programador
triangular ciclico opcional que explora pequefas variaciones periddicas en la tasa de apren-
dizaje. Los hiperpardmetros por defecto son 250 épocas como méaximo, tamario de lote 32 y
una paciencia de 30 épocas.

El entrenamiento se realiza por objetivo: para cada una de las variables max_displacement y
max_stress se ajusta un modelo de salida Unica, se evalla sobre el conjunto de prueba y se
registran métricas estandar de regresién (R?, MAE, MedAE, RMSE y MAPE). Tras el ajuste,
el script guarda el mejor modelo en formato .keras junto con el escalador y las columnas
de entrada en un . joblib, y genera ademas un resumen JSON con rutas y métricas para
trazabilidad. Esta l6gica se encapsula en las funciones train_one_target y run_training,
e incluye una interfaz de linea de comandos que permite elegir objetivo, arquitectura, tipo de
escalado y tamanos de particion.

Con este flujo, la red neuronal queda entrenada de forma reproducible, con preprocesado
coherente y artefactos de despliegue versionados, de modo que posteriormente puede car-
garse el modelo y aplicar exactamente el mismo escalado sobre las mismas caracteristicas
al integrarlo en la aplicacién.

5.7.1. Resultados del modelo neuronal

La red neuronal se entrend utilizando la tres arquitecturas mencionadas anteriormente (sim-
ple, medium, ultimate) y se evaluaron de forma independiente para cada una de las dos
variables objetivo.

En la Tabla se recogen los resultados obtenidos para los tres modelos entrenados de la
red neuronal (Simple, Mediumy Ultimate) en la prediccion tanto del desplazamiento maximo
como de la tension méaxima.

Para el caso del desplazamiento maximo, el modelo Ultimate ofrece el mejor rendimiento,
alcanzando un coeficiente de determinacion R?> = 0.8686, un error medio absoluto (MAE)
de 10.20 mm y un error cuadratico medio (RMSE) de 26.49 mm. Por tanto, se selecciona este
modelo como el definitivo para la prediccién de desplazamientos en vigas, dado que presenta
una mayor capacidad de generalizacion y un error significativamente menor respecto a las
otras arquitecturas.
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En el caso de la tension maxima, el modelo Simple obtiene el mejor equilibrio entre preci-
sion y estabilidad, con un R? = 0.9290, un MAE de 54.41 MPa y un RMSE de 107.30 MPa.
Aunqgue el modelo Ultimate presenta un MAE ligeramente inferior, su peor rendimiento en
R? y RMSE indica una mayor dispersion en los errores, lo que resulta menos adecuado en
este contexto, donde es prioritario minimizar los errores elevados cercanos al limite elastico
del material. Por ello, se adopta el modelo Simple como el mas apropiado para la prediccion
de tensiones.

Tabla 5.11. Resultados de los modelos neuronales para el desplazamiento y la tensién maximos

Variable objetivo Modelo R? MAE RMSE

Desplazamiento max. [mm]  Simple 0.7902 13.05 33.47
Medium 0.8360 11.03 29.59
Ultimate 0.8686 10.20 26.49

Tension max. [MPa] Simple 0.9290 54.41 107.30
Medium 0.9264 55.00 109.25
Ultimate 0.8982 50.98 128.42

En la Figura se presentan las curvas de entrenamiento y validacion del error (Loss) y
del error medio absoluto (MAE) correspondientes a las tres arquitecturas de red neuronal
desarrolladas para la prediccién del desplazamiento maximo: Simple, Medium y Ultimate.

En todos los casos, las curvas muestran una disminucién pronunciada del error durante las
primeras épocas, seguida de una fase de estabilizacion en la que la pérdida converge ha-
cia un valor minimo. Este comportamiento es indicativo de un entrenamiento adecuado, sin
sintomas de divergencia ni sobreajuste severo.

En la arquitectura Simple, las curvas de entrenamiento y validacién evolucionan de forma
muy similar, manteniendo una diferencia reducida entre ambas a lo largo de las épocas. Esto
sugiere una buena capacidad de generalizacién, aunque el valor final del error es mas elevado
en comparacion con las arquitecturas mas complejas, lo que limita su precisién.

El modelo Medium presenta una convergencia mas lenta, pero alcanza valores de pérdida y
MAE inferiores a los del modelo Simple. La diferencia entre las curvas de entrenamiento y
validacién aumenta ligeramente, lo que indica un ajuste mas fino de los parametros y una ma-
yor capacidad de representaciéon, aunque con un ligero riesgo de sobreajuste en las ultimas
épocas.

Por ultimo, la arquitectura Ultimate muestra el mejor rendimiento global. Se observa una
reduccion notable del error de entrenamiento hasta valores muy bajos y una validacién que
se mantiene estable sin incrementos significativos, lo que refleja un equilibrio adecuado en-
tre ajuste y generalizacion. No obstante, la separacién entre las curvas de entrenamiento y
validacién es algo mayor que en los modelos previos, lo que puede asociarse a una mayor
complejidad de la red y, por tanto, a una sensibilidad superior frente al ruido de los datos.

60



Prediccién Inteligente del Comportamiento Mecénico de

Vigas usando Machine Learning y Anélisis por Elementos E Universidad
Finitos Europea

Daniel Lépez Lépez

En conjunto, las gréficas confirman que el modelo Ultimate es el que alcanza la mejor pre-
cisién en la prediccién del desplazamiento maximo, con un proceso de aprendizaje eficiente
y una validacion estable, justificando su seleccién como arquitectura final.
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Figura 5.5. Evolucién de la pérdida (Loss) y del MAE durante el entrenamiento de las tres arquitecturas de red
neuronal para la prediccion del desplazamiento maximo

61



Prediccién Inteligente del Comportamiento Mecéanico de

Vigas usando Machine Learning y Andlisis por Elementos Universidad
Finitos Europea

Daniel Lépez Lépez

En la Figura se muestran las curvas de entrenamiento y validacion del error (Loss) y
del error medio absoluto (MAE) correspondientes a las tres arquitecturas de red neuronal
empleadas para la prediccion de la tensién maxima: Simple, Medium y Ultimate.

En general, las tres arquitecturas presentan un comportamiento estable durante el entrena-
miento, con una reduccion rapida del error en las primeras épocas y una tendencia a la con-
vergencia conforme avanza el proceso de aprendizaje. Esto indica que el modelo ha logrado
ajustarse correctamente a los datos sin presentar problemas significativos de divergencia.

En el modelo Simple, tanto la pérdida de entrenamiento como la de validacién disminuyen
de forma progresiva y casi paralela, con una separacién pequefia entre ambas curvas. Este
comportamiento evidencia una buena capacidad de generalizacién y ausencia de sobreajus-
te, aunque el ritmo de aprendizaje es mas lento y los valores finales de error son superiores
a los de las arquitecturas mas complejas.

La arquitectura Medium muestra una caida mas rapida de la pérdida durante las primeras
épocas y alcanza valores de error menores que el modelo Simple. La ligera separacién entre
las curvas de entrenamiento y validacion sugiere que la red ha captado mejor las relaciones
no lineales de los datos, aunque empieza a reflejar una tendencia leve al sobreajuste hacia
el final del entrenamiento.

Por ultimo, el modelo Ultimate alcanza la convergencia mas estable y uniforme, con curvas
de entrenamiento y validacion practicamente paralelas y con una diferencia muy reducida.
Este resultado confirma que la arquitectura es capaz de generalizar correctamente y mante-
ner un error controlado, aunque la pérdida de validacién se estabiliza ligeramente por encima
de la de entrenamiento, lo cual es un comportamiento normal en redes bien ajustadas.

En conjunto, las gréaficas de las curvas de pérdida confirman que todas las arquitecturas
se entrenaron de forma adecuada, siendo la red Ultimate la que presenta un aprendizaje
mas eficiente y una validacién mas consistente. No obstante, el modelo Simple se considera
mas robusto frente a posibles errores extremos, por lo que se selecciona finalmente para la
prediccidon de tensiones maximas.
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Figura 5.6. Evolucién de la pérdida (Loss) y del MAE durante el entrenamiento de las tres arquitecturas de red
neuronal para la prediccion de la tensién maxima

En la Figura[5.7]se presentan los resultados de las predicciones para las tres arquitecturas de
red neuronal desarrolladas (Simple, Mediumy Ultimate) en la estimacién del desplazamiento
maximo. Cada fila muestra, de izquierda a derecha, la comparacién entre valores reales y
predichos, el diagrama de residuos y la distribucién de los errores.

En los graficos de dispersion (predicciones frente a valores reales) se observa que la nube de
puntos sigue de manera general la diagonal ideal (linea discontinua roja), lo que indica una
buena correlacion entre los valores predichos y los reales.
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Figura 5.7. Comparacién valores reales/predichos, distribucién y analisis de residuos para las tres arquitecturas
de red neuronal en la prediccién del desplazamiento méximo

Este comportamiento mejora progresivamente desde la arquitectura Simple hastala Ultimate,
siendo esta Gltima la que alcanza un coeficiente de determinacién mas alto (R? = 0.87) y una
alineacién mas estrecha con la linea de referencia, lo que evidencia una mayor precision del
modelo.

Los diagramas de residuos muestran que, en los tres casos, los errores se distribuyen de
forma aproximadamente simétrica alrededor de cero, sin patrones sistematicos evidentes. Sin
embargo, se aprecia una ligera dispersion creciente de los residuos a medida que aumentan
los valores predichos, especialmente en los modelos Simple y Medium, o que indica que las
predicciones tienden a ser menos precisas para desplazamientos mas grandes. En el modelo
Ultimate, la dispersion es mas contenida y la concentracién de los residuos en torno a cero
es mayor, lo que confirma una mejor capacidad de generalizacion.
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Por ultimo, las distribuciones de residuos presentan una forma aproximadamente normal, cen-
trada en cero, lo que sugiere que los errores no muestran sesgos significativos. La arquitec-
tura Ultimate destaca por tener una distribucién mas estrecha, reflejando menor variabilidad
y mayor consistencia en las predicciones.

En conjunto, el analisis de las gréficas confirma que el modelo Ultimate es el mas preciso
y equilibrado para la prediccion del desplazamiento maximo, al combinar una alta correlacién
entre valores reales y predichos con una distribucion de errores estable y centrada.

En la Figura[5.8|se presentan los resultados obtenidos en la prediccion de la tensién maxima
para las tres arquitecturas de red neuronal: Simple, Medium y Ultimate. Cada una de ellas
incluye, de izquierda a derecha, el grafico de correlacion entre valores reales y predichos, el
diagrama de residuos y la distribucién de los errores.

En los diagramas de dispersién se aprecia una fuerte correlacién entre los valores reales
y los predichos, con los puntos distribuidos mayoritariamente a lo largo de la diagonal de
referencia (linea discontinua roja). El modelo Simple alcanza un coeficiente de determinacién
R? = 0.93, lo que evidencia un excelente ajuste entre las predicciones y los valores reales.
Las arquitecturas Medium y Ultimate presentan también un buen desempefo (R? = 0.93 y
R? = 0.90, respectivamente), aunque con una ligera mayor dispersion en los valores més
altos de tension.

El andlisis de los residuos muestra que, en los tres modelos, los errores se distribuyen de
forma aproximadamente simétrica en torno a cero, sin tendencias sistematicas claras, lo que
indica que las predicciones no presentan sesgos evidentes. En el caso de la arquitectura
Simple, los residuos son mas compactos y se concentran alrededor del eje horizontal, refle-
jando una buena generalizacién y menor variabilidad. En cambio, en el modelo Ultimate, los
residuos muestran una dispersién ligeramente mayor, especialmente para tensiones eleva-
das, lo que sugiere una mayor sensibilidad a los valores extremos del conjunto de datos.

Las distribuciones de los residuos presentan una forma casi normal, centrada en cero, con
colas reducidas y una frecuencia muy elevada en torno al valor medio. De nuevo, la arquitec-
tura Simple destaca por una distribucién mas estrecha y simétrica, mientras que los modelos
Medium y Ultimate presentan colas algo més extendidas, consecuencia de una mayor com-
plejidad en la red.
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Figura 5.8. Comparacién valores reales/predichos, distribucién y analisis de residuos para las tres arquitecturas
de red neuronal en la prediccion de la tension méaxima

En conjunto, el anadlisis de estas graficas confirma la alta capacidad predictiva del modelo
Simple, que combina una excelente correlacién entre valores reales y estimados con una
distribucion de errores bien equilibrada y sin sesgos. Por estos motivos, este modelo se con-
sidera el més adecuado para la prediccion de la tensién maxima en vigas.

Finalmente los modelos seleccionados son la arquitectura ultimate para los desplazamientos
y la arquitectura simple para la tensibn maxima. Para su uso posterior, cada predictor se
guarda como artefactos independientes: el modelo en formato Keras y el escalador con las
columnas de entrada. En particular, para desplazamiento maximo se genera models/model
_max_displacement_ultimate.keras|y models/scaler_max_displacement_ultimate.
joblib; para tensibn maxima, models/model_max_stress_simple.keras|y models/scale
r_max_stress_simple.joblib. Esta separacién permite cargar solo el predictor necesario
en la aplicacion, garantiza que el preprocesado reproducible (escalado y orden de variables)
sea idéntico en inferencia y facilita la actualizacion de cada objetivo de forma aislada.
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5.8 Prediccion empleando los modelos entrenados

5.8.1. Prediccion con el modelo HGBR

Para realizar predicciones sobre nuevos casos se emplea el script HGBR_predict.py. El
programa carga los modelos entrenados en formato joblib, prepara las entradas de acuerdo
con el conjunto de caracteristicas usado en el entrenamiento vy, si existen valores reales en el
CSYV, calcula métricas y genera graficos de diagnostico. El flujo interno es:

* load_model: carga un paquete joblib con las claves "hgb" (modelo), "features"
(lista de variables) y "eps" (parametro almacenado para referencia).

» preprocess_input: toma el CSV, selecciona solo columnas numéricas y las cruza con
ML_CANDIDATE_FEATURES del mddulo config. El resultado es la matriz X con el orden
de variables correcto.

+ predict_and_plot: aplica hgb.predict (X) y, si hay verdad terreno, calcula R? y MAE;
ademas guarda tres figuras: correlacién real—predicho, histograma de residuales y resi-
duales frente a prediccion.

La ejecucion por linea de comandos es:

python HGBR_predict.py <input_csv> \
<model_max_displacement_HGB.joblib> \
<model_max_stress_HGB.joblib> \
<output_dir>

donde <input_csv> es un fichero con las mismas columnas de entrada utilizadas en el en-
trenamiento (no es necesario escalar ni normalizar), y <output_dir> es el directorio donde
se deja el informe grafico y las predicciones.

El script espera, si estan disponibles, las columnas objetivo max_displacement y max_stress
(definidas en config. TARGET _COLUMNS).

La Tabla5.72)muestra las entradas necesarias para hacer predicciones a partir de un conjunto
de datos ya procesado utilizando el modelo HGBR entrnado. En la Tabla se muestran
las salidas esperadas una vez terminadas las predicciones.
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Tabla 5.12. Entradas requeridas por el script de prediccién con HGBR

Entrada Descripcion

<input_csv> Archivo CSV con las caracteristicas numéricas de entrada. Si
contiene las columnas max_displacement y max_stress, €l
script calcula y reporta las métricas de evaluacion correspon-
dientes.

model_max_displaceme| Modelo joblib entrenado para el objetivo de desplazamiento

nt_HGB.joblib maximo.

model_max_stress_HGB  Modelo joblib entrenado para el objetivo de tension maxima.

.joblib

<output_dir> Directorio de salida donde se guardan los graficos generados y
el archivo CSV con las predicciones.

Tabla 5.13. Salidas generadas por el script HGBR_predict.py

Fichero generado Contenido

correlacion_max_displace| Grafico de dispersidn entre valores reales y predichos pa-

ment . png ra el desplazamiento maximo, con linea de identidad y
anotacion del R? y MAE.

residuales_hist_max_disp Histograma de los residuales obtenidos en la prediccion

lacement.png del desplazamiento maximo.

residuales_vs_pred_max_d  Gréfico de residuales frente a valores predichos, utilizado

isplacement.png para diagnosticar posibles sesgos del modelo.

correlacion_max_stress.png Grafico andlogo al anterior, correspondiente al objetivo
de tensién maxima.

residuales_hist_max_stre  Histograma de residuales obtenidos en la prediccion de

Ss.pug la tension méaxima.

residuales_vs_pred_max_s  Grafico de residuales frente a valores predichos para la
tress.png tensién maxima.

predicciones.csv Archivo CSV de salida que incluye las predicciones gene-

radas en nuevas columnas: max_displacement_pred y
max_stress_pred.

Notas finales: el modelo HGBR no requiere estandarizacién, el script filira de forma segu-
ra las columnas no numéricas y respeta el orden de features almacenado en los paque-
tes joblib. Si el conjunto de columnas del CSV no coincide con el esperado, el cruce con
ML_CANDIDATE_FEATURES evita errores de forma silenciosa, aunque conviene revisar el regis-
tro de métricas y los graficos para detectar posibles pérdidas de informacién en la entrada.

68


model_max_displacement_HGB.joblib
model_max_displacement_HGB.joblib
model_max_stress_HGB.joblib
model_max_stress_HGB.joblib
correlacion_max_displacement.png
correlacion_max_displacement.png
residuales_hist_max_displacement.png
residuales_hist_max_displacement.png
residuales_vs_pred_max_displacement.png
residuales_vs_pred_max_displacement.png
residuales_hist_max_stress.png
residuales_hist_max_stress.png
residuales_vs_pred_max_stress.png
residuales_vs_pred_max_stress.png

Prediccién Inteligente del Comportamiento Mecéanico de

Vigas usando Machine Learning y Andlisis por Elementos Universidad
Finitos Europea

Daniel Lépez Lépez

5.8.2. Prediccion con red neuronal

Este script (NN_predict.py) realiza prediccion con los modelos entrenados de Keras. Carga
el modelo .keras y el escalador guardado en . joblib, prepara las entradas desde un CSV
y genera las predicciones para el objetivo indicado. Si el CSV trae la columna de verdad
terreno, calcula R? y MAE y guarda figuras de evaluacién.

Flujo de trabajo

1. Carga del archivo . joblib que contiene el escalador y la lista de columnas usadas en
entrenamiento (feature_cols).

2. Lecturadel CSV de entrada y construccién de la matriz X exactamente con feature_cols.
Las columnas ausentes se crean con valor 0.0 y se fuerza el tipo numérico seguro
(float32).

3. Transformacion de X con el escalador y carga del modelo .keras.
4. Prediccién del objetivo en todo el conjunto.

5. Si existe la columna objetivo, célculo de R? y MAE y generacion de tres figuras: corre-
lacion real vs. predicho, histograma de residuales y residuales frente a prediccion.

6. Opcionalmente, exportacién de un CSV con las predicciones afiadiendo una nueva co-
lumna predicted_<target>.

Parametros principales

+ —-data: ruta al CSV con las variables de entrada.

* --model: ruta al modelo .keras.

+ —-scaler:rutaal . joblib exportado durante el entrenamiento;incluye scaler y feature_cols.
* —-target: nombre del objetivo a predecir (max_stress 0 max_displacement).

+ —-ycol (opcional): nombre alternativo de la columna objetivo si no coincide con --target.

+ —-outdir: carpeta donde se guardan las figuras y el informe de métricas.

+ —-save_csv (opcional): ruta para escribir un CSV con las predicciones afadidas.

Ejemplos de uso

--- Tensidén méxima ---

python NN_predict.py \

--data data/test.csv \

--model models/model_max_stress_ultimate.keras \
--scaler models/scaler_max_stress_ultimate.joblib \
--target max_stress \

--outdir eval_stress \

--save_csv predicciones_stress.csv
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--- Desplazamiento méximo ---

python NN_predict.py \

--data data/test.csv \

--model models/model_max_displacement_ultimate.keras \
--scaler models/scaler_max_displacement_ultimate.joblib \
--target max_displacement \

--outdir eval_disp

Salida Siel CSV incluye la variable objetivo, el scriptimprime R? y MAE en consola y guarda
en --outdir las figuras correlacion_<target>.png, residuales_hist_<target>.pngy
residuales_vs_pred_<target>.png. Con --save_csv se genera un CSV con la columna
predicted_<target>

Nota practica Si aparecen avisos de columnas faltantes significa que el CSV no contiene
todas las caracteristicas de entrenamiento. Para explotar bien el modelo conviene reconstruir
dichas columnas con el mismo preprocesado que se aplicod antes de entrenar.

5.9 Conclusiones del desarrollo de modelos

Se ha implementado un flujo completo para la generacion y explotacion de datos sintéticos
orientado a la prediccién del comportamiento estructural de vigas. La cadena metodologica
ha comprendido: (i) modelado paramétrico y mallado en HyperMesh, (ii) resolucién numérica
con Optistruct, (iii) extraccion automatica de resultados mediante PyNastran para conformar
el dataset con variables de entrada (longitud, tipo de seccién, material, cargas y condiciones
de contorno) y salidas de interés (desplazamiento y tensién maximos), y (iv) un preprocesado
extensivo con feature engineering basado en expresiones de calculo de vigas, con el fin de
incorporar informacién fisica relevante y estabilizar el aprendizaje.

Con un total de 4058 casos y una particién 70/30 (2839 para entrenamiento y 1218 para
prueba), el modelo HGBR ha mostrado un rendimiento sélido en ambos objetivos: para des-
plazamiento maximo se alcanzé R?> = 0.843, MAE = 11.62mm y MedAE = 2.68 mm; para
tensién méxima, R?> = 0.960, MAE = 36.79 MPa y MedAE = 14.17 MPa. Estos resultados
confirman que un modelo de boosting con histogramas, correctamente regularizado e infor-
mado por variables ingenieriles, es capaz de capturar con eficacia las no linealidades del
problema.

Con objeto de comparar enfoques, se entrenaron distintas arquitecturas de red neuronal. La
mejor configuracién para desplazamiento fue la arquitectura ultimate, con R? = 0.8686,
MAE = 10.20 mm, MedAE = 1.91mm y RMSE = 26.49 mm, superando al HGBR en todas
las métricas principales y mostrando, por tanto, una mayor capacidad de generalizacion para
este objetivo. En tension, la arquitectura simple ofrecid el mejor compromiso para el uso
previsto del modelo, con R? = 0.9290, MAE = 54.41 MPa, MedAE = 25.96 MPa y RMSE =
107.30 MPa. Aunque algunas arquitecturas profundas reducen ligeramente el MAE, su peor
R? y/o RMSE indican mayor variabilidad y errores extremos mas probables, algo indeseable
cerca del limite elastico.
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En consecuencia, y de acuerdo con los andlisis de aprendizaje, dispersién y residuos:

» Para desplazamiento maximo, se selecciona la red neuronal ultimate, por su mejor
R?, menor MAE y MedAE, y distribucion de errores méas concentrada.

+ Para tensién maxima, se adopta el modelo neuronal simple (frente a alternativas mas
complejas), por su equilibrio entre precision global y control de errores grandes (RMSE
competitivo), criterio mas seguro en un contexto con restricciones de resistencia.

Durante la validacion se ha observado que el MAPE puede ser engafioso en desplazamientos
debido a la presencia de valores reales cercanos a cero, lo que magnifica el porcentaje de
error, por ello, el andlisis se ha apoyado preferentemente en R?, MAE, MedAE y RMSE.
Asimismo, aunque los datos sintéticos permiten explorar un dominio amplio de disefio con
bajo coste, la capacidad de extrapolacion fuera del espacio de parametros muestreado debe
considerarse limitada.

En suma, el pipeline propuesto integra simulacién numérica, extraccion sistematica de resul-
tados y aprendizaje supervisado con feature engineering fisico, alcanzando modelos precisos
y estables para ambos objetivos. Esta base es adecuada para su integracion en la aplicacién
Alabeam y para su extension futura a: (i) ampliacién y estratificacion del dataset con nuevos
materiales y esquemas de carga, (ii) calibraciéon con datos experimentales o de campo, (iii)
técnicas de estimacién de incertidumbre (ensembles, MC dropout) y umbrales de confianza
operativos, y (iv) optimizacion multiobjetivo (peso—rigidez—tension) asistida por los modelos
seleccionados.
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5.10 Implementacién de la interfaz Alabeam

La interfaz Alabeam se ha desarrollado con Streamlit para ofrecer una herramienta de pre-
diccién accesible a usuarios sin experiencia en calculo. La aplicacion encapsula el preproce-
sado y los modelos entrenados, permitiendo seleccionar la geometria y las condiciones de
contorno de una viga 2D y obtener al instante la estimacion del desplazamiento maximo y de
la tensién equivalente de Von Mises maxima.

La Figura[5.9|muestra el aspecto general de la interfaz de Alabeam.

Configuracién de
modelos

-y .
HEyy  Prediccion de vigas | Alabeam
© 168M O Red neurona ’ {Bienvenid@ soy Alabeam! el genio del calculo estructural, deja que te ayude a disefiar vigas de manera répida y eficiente.

P Obten predicciones de desplazamiento maximo y tensién méxima a partir de las caracteristicas de tu viga.
© Factor de Seguridad c?[labeam
Factor de seguridad (%) ]

—

Geometria global Material Vista de seccion
Carpeta de modelos (0]

L fongitud detaviga) fmm] wateril

models Seccién Transversal: BAR

1000.00 -+ Acero v
Leom

Tipo de seccion transversal E=210000 MPa | v=0.3 | p =7.80e-06 kg/mm? | fy = 370 MPa

Barrarectangular (BAR) ¥ Propiedades de la seccion:

Dimensiones de la seccién (mm): Area (A) = 2400.00 mm?*

dim1=anchob Momento de inercia (1z) = 7.20e+05 mm*

40.00 -+ £ °

dim2=altoh

60.00 -+

6= 40.0mm

Figura 5.9. Interfaz grafica de la app Alabeam en Streamlit

5.10.1. Estructura del proyecto

El proyecto se encuentra en el repositorio referenciado en [29]. El proyecto de Alabeam sigue
la siguiente estructura explicada en el ApéndiceB.2

El archivo Alabeam. py contiene la interfaz y el enrutado de acciones. El médulo preprocessing.py
replica exactamente el pipeline de creacién de rasgos utilizado en el entrenamiento, lo que ga-
rantiza que las columnas, los escalados y las transformaciones son consistentes. En models

se alojan los estimadores basados en arboles (. joblib). En models_neural se guardan los
modelos Keras (.keras), los escaladores (. joblib) y el listado canénico de columnas de
entrada para la red (feature_columns_neuralnet.csv).

5.10.2. Flujo de uso

1. El usuario define la longitud de la viga, el tipo de seccion, sus dimensiones nominales,
el material, la configuracién de apoyos y hasta tres acciones concentradas 0 momen-
tos. La nomenclatura de dimensiones sigue la empleada en HyperMesh y la tabla de
equivalencias presentada en el desarrollo. En la Figura se muestra una viga de
ejemplo de 1500 mm de longitud, seccién tipo rectangular hueca y material aluminio.
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Geometria global
L(longitud de la viga) [mm]

1500.00

Tipo de secci6n transversal

Caja/rect. hueca (BOX)

Dimensiones de la seccién (mm):

dim1=anchob

60.00

dim2 = alto h

80.00

dim3=espesorenaltot_y

5.00

dima = espesoren ancho t_x

5.00

Material

Material

= & Aluminio

E=70000 MPa |v=0.32| p=2.70e-06 kg/mm* | fy =270 MPa

~  Propiedades de la seccién:
Area (A)=1300.00 mm?*
Momento de inercia (1z) = 1.13e+06 mm*
-+
-+
-+
-+

Vista de seccion

¥ [mm]

1

Seccién Transversal: BOX

= 5.0 mm|

X[mm]

¢ Ayuda para esta seccién

Secci6n rectangular hueca:

aim: =ancho total (b)
dim2 =alto total (h)
aim3 =espesor en direccidn X (tx)

dimé =espesor en direccién Y (ty)

Los espesores deben ser menores que las dimensiones totales

Figura 5.10. Ejemplo de seleccion de una viga en Alabeam

2. La aplicacién valida unidades y rango. Se trabaja en mm, N y MPa. Se comprueban
espesores positivos (Figura [5.11), esbeltez razonable y ausencia de mecanismos en
los extremos (Figura[5.12).

Geometria global
L (langitud de la viga) [mm)

1500.00
Tipa de seccidn transversal

Tubo circular (TUBE)
Dimensiones de la seccién (mm):
dim1 = radio externo

0.00

dim2 = radio interno

10.00

Material
Material
= Aluminio
E=T70000 MPa | v=0.32| p=2.T0e-06 kg/mm’ | fy = 270 MPa
Propiedades de la seccidn:
Area [A) = -0.00 mm*

Momento de inercia (Iz) = -4.91e-38 mm*

>

Vista de seccién

Seccién Transversal: TUBE

R=0.0mm

Ayuda para esta seccidn

=8 = Radio exterior= 0.0 mm
- = Radioitarior = 0.0mm

i Radio interno debe ser menor que exte

Figura 5.11. Ejemplo de advertencia por radio externo incoherente
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Apoyos y cargas
Apoyo izquierdo Nimero de cargas
i

Simple v e

Apoyo derecho

Libre ~

. Configuracién invalida: Una viga con un solo apoyo simple es un mecanismo. Para un solo apoyo, debe ser empotrado.

Cargal
Tipol Direccién 1 Magnitud 1
Fuerza v X v 1000.00

Vista previa de la viga

Configuracién actual de la viga:

Fe= 1000N

[

posici6n [mm

Unidades: Fuerza en N, Momento en N-mm, posiciones en mm,

Posicién 1 [mm]

- 4 500.00

= Configuracién:

Geometria: + L =1000.0 mm - Seccién: BAR - Material: Steel

Apoyos: + Izq: Simple - Dcha: Libre

Cargas:

@ FX=1000N

Posicion: 500.0

mm

Figura 5.12. Ejemplo de advertencia por mecanismo

3. Como se muestra en la Figura[5.73]en la zona inferior se dispone del area de seleccion
de cargas, donde se permite seleccionar hasta tres. También se muestra un esquema
para previsualizar el modelo de la viga segun los datos introducidos.

Apoyos y cargas
Apoyo izquierdo Namero de cargas
Empotrado v —‘

Apoyo derecho

Libre v

Cargal

Tipo1 Direccion 1 Magnitud 1
Fuerza ~ Y v 1000.00

Carga2

Tipa2 Direccién2 Magnitud 2
Momento ~ z ~ 8000.00

Vista previa de la viga

Configuracién actual de la viga:

2= 5000 -mm o)

posicién [mm

Unidades: Fuerza en N, Momento en N-mm, posiciones en mm.

Posicion 1 [mm]

- 4 900,00

Posicién 2 [mm]

- 4 250.00

= Configuracién:

Geometria: + L =1500.0 mm - Seccién: TUBE  Material: Aluminum

Apoyos: « Izq: Empotrado « Dcha: Libre

Cargas:

@ Fr=1000N

Posicién: 900.0

Fosici6n: 250.0

mm

© M2=8000 N'mm

nm

Figura 5.13. Seleccién de cargas y visualizacion
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4. Con los datos validados, preprocessing.py genera las variables fisico-informadas uti-
lizadas en el entrenamiento: magnitudes como EI, W,, r,, escalas L3/EI, L4/EI,
razones adimensionales y agregados de carga. Para la red neuronal, se reordena el
vector de entrada con feature_columns_neuralnet.csvy se aplica el escalado guar-
dado.

5. El usuario puede elegir el modelo de prediccion: HGBR o red neuronal (Figura [5.14).
Alabeam carga en memoria los modelos la primera vez y los reutiliza en sesiones pos-
teriores. Ademas, se implementa el uso de si se desea un factor de seguridad para
obtener predicciones mas conservativas.

Configuracion de
modelos

Modelo a usar

O LGBM Red neuronal

@ Factor de Seguridad

Factor de seguridad (%) @
10
—i

Figura 5.14. Seleccién de modelos y factor de seguridad

6. Se ejecuta la prediccién y se presentan los resultados principales: desplazamiento ma-
ximo [mm] y tension de Von Mises méxima [MPa]. De forma auxiliar se muestran reco-
mendaciones segln los resultados obtenidos. La Figura [5.15 muestra unos resultados
de ejemplo con recomendaciones.

@ predecir

Prediccién completada.

© Nota: Se ha aplicado un factor de seguridad del 10% a los resultados predichos.

Desplazamiento maximo [mm] () Tension maxima [MPa] @

33.125158 39.599

@ Recomendaciones

& Optimizacién de material: El estrés actual (39.6 MPa) es muy bajo comparado con la resistencia del Aluminio (270 MPa). Considera usar un material mas econémico:

Desplazamiento elevado: 33.13 mm. Considera

« Aumentar rigidez - Incrementar momento de inercia (altura de la seccién)
« Material mas rigido - Mayor médulo elastico (E)
+ Reducir luz libre - Afiadir apoyos intermedios si es posible

> 14l Andlisis de Utilizacion del Material
P Descargar CSV con entradas + predicciones (eon factor de seguridad 10%)

> Debug: verfila cruda y features preprocesadas

Figura 5.15. Resultado de predicciones en Alabeam
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Se muestra de forma gréfica el porcentaje de uso del material para considerar el cambio
por otro material. En el ejemplo de la Figura las tensién maximas estan muy por
debajo del limite elastico por lo que se podria considerar otro material mas econémico.

v [4l Anélisis de Utilizacién del Material

@ Factor de utilizacién

Utilizacién del Aluminio (fy = 270 MPa) 16 OO/O
dizacisn T Limite recomendado (5 Margen de seguridad
‘ 84.0%
Capacidad adicional
84%

Figura 5.16. Porcentaje de tensién respecto al limite elastico del material

7. Opcionalmente se puede descargar un resumen en CSV con entradas, variables y sa-
lidas para trazabilidad.

5.10.3. Motores de prediccion

HGBR. Se emplean los ficheros model _max_displacement_logHGB. joblib y model_
max_stress_logHGB. joblib. No requieren estandarizacion de entradas, pero si el mismo
conjunto de rasgos que en entrenamiento. El sufijo 1ogHGB indica que se entrend en un es-
pacio de rasgos y objetivos coherente con las escalas fisicas, tal y como se documenta en el
capitulo de entrenamiento.

Red neuronal. Se usanmodel_max_displacement_neuralnet.keras y model_max_stre
ss_neuralnet.keras|junto con los escaladores scaler_displacement_neuralnet. joblib
y|scaler_stress_neuralnet. joblib. Antes de inferir, Alabeam aplica el transformador
correspondiente y garantiza el orden de las columnas incluyéndolo en el scaler.

5.10.4. Entradas disponibles
+ Longitud entre 150 y 5000 mm.

« Secciones: circular maciza, circular hueca, rectangular maciza, rectangular hueca y
perfil en |. Las dimensiones se introducen con la misma convencién de HyperMesh.

» Materiales: aceros al carbono e inoxidable, aluminio y titanio. Sus propiedades por de-
fecto son las usadas en el dataset, editables por el usuario si lo desea.

» Apoyos: empotrado-libre, simple—simple y mixtos empotrado—simple o simple—empotrado.

» Acciones: hasta tres cargas puntuales en X o Y y momentos alrededor de Z, con posi-
cién a lo largo de la luz.
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Factor de seguridad El usuario puede introducir un factor de seguridad F'S > 1 para
mayorar de forma conservadora las salidas. Las magnitudes mostradas se actualizan como

* * —
Ogm = FSoym, Wnax = FS wpax,

y la comparacion con el material se realiza con el valor mayorado. El indicador de utilizacién
se define como

*
- .y g.
utilizacion = /=2,
Oy

donde o, es el limite elastico del material seleccionado.

Sistema de recomendaciones Ademas de los valores numéricos, Alabeam genera reco-
mendaciones automaticas que ayudan a interpretar la prediccién y a orientar decisiones de
rediseno. El motor aplica reglas simples basadas en dos sefales: la utilizacion por tensién y
el desplazamiento maximo.

Reglas basadas en tensioén

— *
Sear =0}, /0y

» Sir < 0.3 (baja utilizacién), se sugiere optimizacion por material. Por ejemplo, si se usa
titanio se propone acero o aluminio; si se usa acero, se propone aluminio. El objetivo
es reducir coste 0 masa cuando existe mucho margen.

*+ Si 0.9 < r < 1.0 (zona préxima al limite), se emite un aviso e indica opciones para
incrementar resistencia del material o aumentar area de seccion.

+ Sir > 1.0 (supera el limite eldstico), se marca como condicién critica y se recomiendan
materiales de mayor resistencia o un incremento de seccion.

« Sir > 0.5y no se cumple ninguno de los casos anteriores, se informa de una utilizacién
moderada con margen razonable.

Reglas basadas en desplazamiento

Con el desplazamiento mayorado w? . :

max”
+ Siw} .. > 10mm, se recomienda aumentar rigidez elevando el momento de inercia de
la seccién, emplear un material con mayor médulo eléstico E' o reducir la luz mediante
apoyos intermedios.

* Siw’ . < 1mm, se informa de rigidez adecuada.

max
Reglas combinadas y de eficiencia

« Sir > 09y w:, > 5bmm, se emite una recomendacion de revision completa del

max

disefo, dado que fallan simultdneamente rigidez y resistencia.

« Sir < 02y wr, < 2mm, se identifica oportunidad clara de optimizacion, ya sea

max

reduciendo dimensiones o empleando materiales mas econémicos.
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5.10.5. Ejecucion y despliegue

El archivo requirements. txt fija versiones de scikit-learn, tensorflow, joblib, pandas,
numpy y streamlit. La aplicacion se ejecuta con:

pip install -r requirements.txt

streamlit run Alabeam.py

En ejecucion local, Alabeam guarda en caché los modelos y escaladores para minimizar el
tiempo de respuesta. El log de prediccién registra fecha, versién del modelo cargado y métri-
cas de referencia almacenadas enmodels/metrics y enmodels_neural/*performance.csv.

Con el fin de facilitar la interaccién con los modelos desarrollados y ofrecer una herramienta
accesible desde cualquier dispositivo, la aplicacion Alabeam se ha desplegado en la plata-
forma Streamlit Cloud. Este entorno permite ejecutar aplicaciones de machine learning con
interfaz grafica de forma sencilla y gratuita, integrando tanto la légica de predicciéon como la
visualizacién de resultados.

El despliegue se ha realizado utilizando la capa gratuita del servicio, lo que permite acceder
a la aplicacién directamente a través de la direccion web:

https://Alabeam.streamlit.app

Esta versién alojada en la nube ejecuta la interfaz desarrollada en Streamlit y los modelos
entrenados de desplazamiento y tension maxima, proporcionando una experiencia de usua-
rio intuitiva y sin necesidad de instalacién local. No obstante, la principal limitacién del plan
gratuito es que la instancia permanece activa Unicamente durante aproximadamente 12 ho-
ras de inactividad. Transcurrido este tiempo, el servicio entra en modo sleep (reposo), por lo
que al intentar acceder nuevamente es necesario pulsar el botén “Wake up” o “Despertar’.
En ese momento, el entorno tarda unos segundos en reactivarse antes de que la aplicacion
vuelva a estar completamente operativa.

A pesar de esta limitacién, el despliegue en Streamlit Cloud constituye una solucién eficaz
para la difusion y validacion funcional del proyecto, al permitir el acceso remoto a Alabeam
sin requerir configuraciones locales adicionales.
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Capitulo 6. RESULTADOS Y DISCUSION
6.1

Para verificar la capacidad de generalizacién del modelo fuera de los datos usados en entre-
namiento y prueba, se construyd un conjunto adicional de 50 vigas no vistas. Con este lote
se evalu6 el HistGradientBoostingRegressor y la red neuronal entrenados y se represent6
la correlacion entre valores reales y predichos. La linea discontinua indica la recta identidad

Y=z

Validacion externa con 50 casos independientes

Resultados con HGBR En la prediccién de tensién de Von Mises maxima se obtuvo R? ~
0,978 y MAE ~ 21,38 MPa (Figura[6.2), con puntos muy préximos a la diagonal y residuales
acotados, aunque con ligera heterocedasticidad a tensiones altas (Figura[6.3). Para el despla-
zamiento méaximo el ajuste fue mas modesto (R? ~ 0,872, MAE = 8,43 mm) (Figura: los
puntos de mayor desplazamiento muestran mayor dispersion y una tendencia a subestimar
los valores mas grandes, coherente con un sesgo hacia regimenes mas rigidos del espacio
de disefo. Esto también se ve reflejado en la grafica de residuos de la Figura

Correlacion real vs predicho: max_stress
R? = 0.978, MAE = 21.383

Correlacion real vs predicho: max_displacement
R? = 0.872, MAE = 8.434

1200

300 | ~ L

. 1000 .
250 A ~ 7

. 800 - .
200 e

Y
N
predicho

N,

max_dis|

150 4

placement predicho
£y

50 4

Figura 6.1. HGBR - Desplazamiento méximo.

50 100 150 200 250 300

max_displacement real
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max_stress
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400 -

200 +

600 800 1000

max_stress real

400

Figura 6.2. HGBR - Tensién méxima.
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Residual

Resultados con la red neuronal

Residual vs Prediccién: max_displacement

50

254

—25

—50 4

—75

—100 A

T T T T
100 150 200 250

max_displacement predicho

T T
0 50

Figura 6.3. HGBR - Residuos desplazamiento
maximo

T
300

Residual

150

100 -

50 4

—504

—100 1

-150 1

Residual vs Prediccion: max_stress

T T T T T
400 600 800 1000 1200

max_stress predicho

T
0 200

Figura 6.4. HGBR - Residuos tensién maxima

En el mismo conjunto independiente, la red neuronal

alcanzé R? ~ 0,988 y MAE = 21,89 MPa para tensién méxima (Figura , con dispersion
similar a la de HGBR en el rango alto (Figura[6.7). En desplazamiento méximo el salto fue
notable: R? ~ 0,980 y MAE ~ 4,09 mm (Figura , con una nube muy cefida a la diagonal
y residuales estrechos salvo algunos casos aislados de gran flecha (Figura [6.8).

placement predicho

max_dis|

Correlacién real vs predicho: max_displacement
R? = 0.980, MAE = 4.087

300 4 o~

250 /

200+ -

150 4 -

50 - -

100 150 200 250 300

max_displacement real

0 50

Figura 6.5. NN - Desplazamiento maximo

80

predicho

max_stress

Correlacion real vs predicho: max_stress
R? = 0.988, MAE = 21.885

1200 A

1000 -

800 4

600 4

400 4

200 4

600 800 1000 1200

max_stress real

400

Figura 6.6. NN - Tensién méxima
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Residual vs Prediccién: max_displacement Residual vs Prediccion: max_stress
60 -
10 A
N 40 4
L 20
E] 3 g
% -10 S Y S
& & *
204
20
_40
—30 —60 4
0 50 100 150 200 250 0 200 400 600 800 1000 1200
max_displacement predicho max_stress predicho
Figura 6.7. NN - Residuos desplazamiento maximo Figura 6.8. NN - Residuos tensién maxima

La Tabla [6.1] muestra un resumen de los resultados obtenidos para cada variable objetivo en
los dos modelos.

Tabla 6.1. Métricas sobre el conjunto externo de 50 vigas no vistas

Modelo Objetivo R? MAE
HGBR max_stress 0,978 21,38 MPa
HGBR max_displacement 0,872 8,43 mm
Red neuronal max_stress 0,988 21,89 MPa

Red neuronal max_displacement 0,980 4,09 mm

Los diagramas de correlacion confirman que ambos modelos capturan bien las tendencias
globales. En tension, los dos presentan un ajuste muy similar; la diferencia de MAE es mar-
ginal y dentro del ruido esperado por la propia discretizacién del problema y la variabilidad
geométrica. En desplazamiento, la red neuronal mantiene la pendiente y la alineaciéon con
y = x a lo largo de todo el rango, mientras que el HGBR muestra mayor dispersién en el
extremo de grandes flechas. Los diagramas de residuales refuerzan esta conclusion: para
HGBR aparecen colas més anchas en los casos con desplazamientos altos; en la red neu-
ronal los residuales se distribuyen de forma mas estrecha y aproximadamente centrada, con
heterocedasticidad moderada en tensiones elevadas.

Estos resultados son coherentes con las métricas obtenidas durante el entrenamiento: el
HGBR ya mostraba un rendimiento muy fuerte en la prediccién de tensiones y un desemperio
mas limitado en desplazamientos cuando no se controlaba cuidadosamente la escala fisica
de entrada. Tras el preprocesado y la incorporacién de rasgos fisico informados, la red neuro-
nal aprovechd mejor la informacién de escala y linealidad local, especialmente para la flecha,
donde el comportamiento suave y continuo favorece a arquitecturas densas con activaciones
no lineales.

Para prediccion de tension maxima, HGBR y red neuronal ofrecen precisién equivalente en
términos practicos sobre datos no vistos. Para desplazamiento méaximo, la red neuronal es
claramente superior en este experimento independiente, con casi la mitad del MAE y un R?
sensiblemente mayor. Con base en ello, una estrategia razonable es:
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1. Emplear la red neuronal como modelo de referencia para desplazamientos;

2. Mantener el HGBR o la propia red neuronal para tensiones, indistintamente, dado su
rendimiento similar;

3. Considerar un enfoque combinado o ensemblado si se desea robustez extra frente a
casos limite, y complementar con estimacion de incertidumbre (p. €j., pérdidas cuantili-
cas en HGB o dropout en inferencia para la red) cuando se trabaje cerca de los bordes
del espacio de disefio.

En todos los casos, la calidad de la prediccion seguira estando condicionada por la cobertura
del dataset en las regiones de mayor flexibilidad y por la correcta aplicacién del preprocesado
fisico informado que alinea las entradas con las escalas L, E I y su interaccién con las cargas.

En conjunto, la validacion externa respalda la solidez de los modelos: las métricas son cohe-
rentes con las obtenidas en el conjunto de prueba y el patrén de puntos se alinea con la recta
identidad en ambos objetivos. Con base en estos resultados, se consideran los modelos su-
ficientemente estables para su integracién en la interfaz Alabeam y su uso en escenarios
de prediccién rapida. Como trabajos futuros, puede reforzarse la cobertura en regiones de
cargas elevadas y longitudes efectivas extremas, e incorporar diagnésticos adicionales de
residuos estratificados por seccion y tipo de apoyo.

6.2 Comparacion de resultados: caso de estudio real

En este apartado se presenta un analisis comparativo entre las predicciones obtenidas con
la herramienta Alabeam y el analisis numérico realizado con HyperMesh/Optistruct para una
viga de validacion adicional, generada desde cero en HyperMesh. El objetivo es evaluar la
precisién de los modelos de aprendizaje frente a una simulacion MEF detallada, y discutir
aspectos practicos como tiempo de ejecucion, requisitos de licencia y la curva de aprendizaje
necesaria para cada enfoque.

6.2.1. Descripcion del caso de estudio

La viga analizada se muestra en la Figura[6.9]y tiene las siguientes caracteristicas:

* Longitud: L = 1775 mm.

» Material: aluminio (propiedades empleadas en HyperMesh/OptiStruct segun la confi-
guracién del modelo).

» Condiciones de contorno: empotrada en el extremo izquierdo y libre en el extremo
derecho (cantiléver).

+ Seccion: perfil tipo / — dimensiones mostradas en la Figura (captura adjunta).

« Carga: carga aplicada en eje Y (hacia abajo) situada a 1579.75 mm desde el extremo
empotrado.
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Figura 6.9. Modelo de la viga utilizada

. 30 mm o
< i >
I I | A
e/ |
€
M~
Al
£
IS
z &
______ > — — -
6 mm -
i
s I
N |
L | v
I 30 mm

Figura 6.10. Dimensiones de la seccién | empleada en el modelo

6.2.2. Resultados de la simulacién FE (HyperMesh / OptiStruct)

La solucién obtenida mediante OptiStruct para la configuracién descrita arroja los siguientes
valores de referencia:

« Desplazamiento maximo: u'5 = 79.29 mm.

« Tension maxima (Von Mises): 0'E = 224.075 MPa.
En la Figura [6.11] se presentan los resultados obtenidos en HyperView, donde la imagen
(a) corresponde al campo de desplazamientos y la imagen (b) muestra la distribucién de
tensiones de Von Mises.
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Figura 6.11. Resultados FE: desplazamientos y tensiones para la viga de 1775 mm.

6.3 Resultados de Alabeam

A continuacién se presentan los valores predichos por la aplicaciéon Alabeam, basada en el
modelo de red neuronal, para la misma viga analizada mediante el modelo de elementos
finitos en HyperMesh/OptiStruct:

- Desplazamiento maximo (Alabeam): vAB = 82.57 mm

« Tension maxima (AlaBeam, Von Mises): o8 = 248.32 MPa

6.3.1. Meétricas de comparacion

Para cuantificar la diferencia entre la simulaciéon FE (HyperMesh/OptiStruct) y la prediccién
de Alabeam se emplean las siguientes métricas:

Error absoluto (EA) = |2FF — z4B

’xFE_ AB’

Error relativo (ER) = TR x 100 %
x
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donde z es la magnitud de interés (umax 0 Tmax)-

En la Tabla[6.2] se muestran los valores de ambos andlisis con las muestras de el error obte-
nido entre la simulacién hecha por MEF y con Alabeam.

Tabla 6.2. Comparacion entre los resultados del analisis FE (HyperMesh/OptiStruct) y la prediccién de Alabeam
(modelo de red neuronal) para la viga de validacion.

Magnitud FE (HyperMesh) Alabeam Error absoluto Error relativo
Desplazamiento maximo [mm] 79.29 82.57 3.28 4.13%
Tensién maxima (Von Mises) [MPa] 224.08 248.32 24.25 10.82 %

La Figura presenta un gréafico de barras que permite comparar de forma visual las dife-
rencias entre ambos analisis.

- MEF
- Alabeam

250

200

Valor

501

Desplazamiento maximo (mm) Tensién méaxima (MPa)

Figura 6.12. Comparacion entre MEF (HyperMesh) y Alabeam

6.3.2. Discusion

Los resultados muestran una excelente correlacién entre la prediccion de Alabeam y el ana-
lisis realizado mediante el modelo de elementos finitos. El error relativo en desplazamiento
maximo es del 4.13 %, mientras que para la tensibn maxima alcanza un 10.82 %. Estos va-
lores son plenamente aceptables considerando que el modelo de red neuronal ha sido en-
trenado con datos sintéticos generados bajo una gran variedad de geometrias, materiales y
condiciones de contorno.

Ademas, Alabeam ofrece la ventaja de obtener resultados en menos de un segundo, sin
necesidad de disponer de licencias de software comercial ni conocimientos avanzados de
modelado FE, lo que supone una alternativa rapida y eficiente para analisis preliminares o
tareas de disefio conceptual.
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6.3.3. Comparativa practica: tiempo, licencia y curva de aprendizaje

Tiempo

* HyperMesh + OptiStruct: preparacion del modelo (creacion de la seccién |, mallado,
definicién de propiedades, materiales, condiciones de contorno y carga, y ejecucion)
suele requerir desde varios minutos hasta horas segun la complejidad y la pericia del
usuario. La ejecucion del solver en un modelo de viga 1D es rapida (segundos), pero
la preparacion y postprocesado consumen la mayor parte del tiempo.

» AlaBeam: la prediccion es practicamente instantanea (orden de milisegundos a se-
gundos) una vez introducidos los parametros en la GUI y aplicado el preprocesado
automatico.

Licencia

» HyperMesh/OptiStruct: software comercial con coste de licencia, tipicamente usado
por empresas de CAE. Implica inversién econdémica y, en muchos casos, acceso insti-
tucional.

« AlaBeam: herramienta propia basada en modelos entrenados; su despliegue (por ejem-
plo en Streamlit Cloud) puede ser gratuito o con coste reducido. Sin embargo, la validez
de las predicciones depende del dataset y no sustituye la necesidad del software CAE
para analisis de alta fidelidad.

Conocimientos requeridos

» HyperMesh/OptiStruct: requiere conocimientos en MEF, preparacion de mallas, elec-
cion de elementos y criterios de convergencia; ademas del manejo del software (Hy-
perMesh/HyperView) y de la interpretacion correcta de resultados (tensiones, factores
de seguridad, etc.).

+ AlaBeam: orientado a usuarios con conocimientos de ingenieria basica que deseen
estimaciones rapidas. Sin embargo, interpretar resultados criticos (p. €j. tensiones cer-
canas al limite elastico) aun requiere juicio técnico.

6.3.4. Conclusion del caso de estudio

El caso de validacion realizado demuestra la capacidad de la herramienta Alabeam para re-
producir con elevada precisién los resultados de un analisis estructural mediante elementos
finitos. A pesar de tratarse de un modelo simplificado basado en datos sintéticos, las discre-
pancias respecto al resultado de referencia obtenido con HyperMesh/OptiStruct se mantienen
por debajo del 11 % en ambos parametros analizados, lo que evidencia la robustez del enfo-
que propuesto.

Ademas, la prediccion mediante Alabeam se obtiene de forma instantanea y sin necesidad
de disponer de licencias comerciales ni de conocimientos avanzados en modelado FEM.
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Por contra partida, un analisis con HyperMesh requiere una configuracién detallada del mo-
delo, tiempos de ejecucion mucho mayores y un coste computacional y econémico significa-
tivamente superior.

En conclusion, este caso de estudio ilustra el potencial de las técnicas de aprendizaje automa-
tico para agilizar el analisis estructural, abriendo la puerta a su aplicacién en fases tempranas
de disefio, optimizacion o evaluacion de configuraciones paramétricas sin depender de un
software de simulacidén convencional.
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Capitulo 7. CONCLUSIONES

7.1 Conclusiones del trabajo

El objetivo principal de este trabajo fue demostrar la viabilidad de emplear técnicas de Machi-
ne Learning para aproximar resultados de andlisis estructural obtenidos por el Método de los
Elementos Finitos. Para ello se disefé y validé un flujo completo que integra generacién de
datos por simulacion (HyperMesh + OptiStruct), extraccion automatica de resultados median-
te PyNastran, un preprocesado con feature engineering fisico-informado y el entrenamiento
de modelos supervisados (HGBR y redes neuronales).

Los principales resultados y conclusiones son los siguientes:

» Generacion y datos. Se generd un conjunto sintético de 4058 modelos mediante si-
mulaciones MEF, empleando una particién de datos 70 % /30 % (2839 casos para en-
trenamiento y 1218 para prueba). El pipeline automatico garantiza trazabilidad y re-
producibilidad entre la definicién geométrica (HyperMesh), la ejecucion (OptiStruct) y la
extraccion de magnitudes de interés (desplazamiento y tensidon maximos).

» Preprocesado. El feature engineering aplicado (ecuaciones de vigas, variables geomé-
tricas y codificaciones categéricas) mejora la representatividad fisica de las entradas y
facilita el aprendizaje, reduciendo la necesidad de arquitectura excesivamente comple-
ja.

* Rendimiento de HGBR. El modelo Histogram Gradient Boosting Regressor mostrd un
comportamiento robusto y competitivo:

+ Desplazamiento maximo: R* = 0.843, MAE = 11.6189 mm, MedAE = 2.6783 mm.
+ Tensién maxima: R?> = 0.960, MAE = 36.7916 MPa, MedAE = 14.1722 MPa.

Estos valores muestran que, con un conjunto de features bien disefiado, los métodos
de boosting son capaces de capturar las no linealidades relevantes con alta estabilidad.

* Rendimiento de las redes neuronales. Se entrenaron varias arquitecturas y se com-
pararon con HGBR:

« Arquitectura ultimate para desplazamiento: R* = 0.8686, MAE = 10.2020 mm,
MedAE = 1.9112 mm, RMSE = 26.4861 mm, MAPE = 113.82% (n_test =
1218).

« Arquitectura simple para tension: R?> = 0.92897, MAE = 54.4107 MPa, MedAE =
25.9554 MPa, RMSE = 107.2986 MPa, MAPE = 26.21 % (n_test = 1218).

En resumen: la red neuronal ultimate supera a HGBR en la prediccién de desplaza-
mientos (mejores R?, MAE y MedAE), mientras que para tensiones la arquitectura mas
simple ofrecié el mejor compromiso entre ajuste y control de errores extremos (RMSE
competitivo).
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+ Seleccioén final de modelos. Atendiendo tanto a métricas como al andlisis de disper-
sion y residuos, se adoptaron las siguientes decisiones:

» Desplazamiento maximo: modelo seleccionado — red neuronal ultimate.

 Tension maxima: modelo seleccionado — red neuronal simple (por su mejor con-
trol de errores extremos en comparacion con arquitecturas mas profundas).

» Despliegue y usabilidad. La aplicacién Alabeam fue implementada en Streamlit y des-
plegada en la capa gratuita de Streamlit Cloud (URL publica). Esto facilita la validacion y
difusién, aunque el plan gratuito impone limitaciones operativas (instancias que entran
en reposo tras inactividad).

Limitaciones principales

+ Los datos son sintéticos: aunque permiten explorar un dominio amplio, la validez fuera
del espacio muestreado (extrapolacién) es limitada hasta contar con validacion experi-
mental.

+ Criterios como el MAPE pueden resultar engafiosos cuando existen valores reales
cercanos a cero; por ello se ha priorizado R?, MAE, MedAE y RMSE en la evaluacion.

+ El estudio se ha acotado a vigas 2D/simple, por lo que la aplicabilidad a placas, sélidos
0 ensamblajes requiere trabajo adicional.

* No se han incluido (en este trabajo) estimaciones sistematicas de incertidumbre en las
predicciones (intervalos de confianza), imprescindible para usos industriales criticos.

Aportaciones y valor afiadido

» Demostracién practica y reproducible de un flujo completo: desde la generacion auto-
matica de modelos MEF hasta el despliegue de una aplicacién interactiva con modelos
predictivos.

» Comparativa cuantitativa entre un método de boosting (HGBR) y redes neuronales, con
justificacion de seleccion por objetivo.

 Implementacién de un preprocesado con base fisica que mejora la interpretabilidad y
la estabilidad del aprendizaje.

» Cdédigo y modelos empaquetados para facilitar su reutilizaciéon y ampliacion.

En conclusion, este trabajo demuestra que el Machine Learning puede ser una herramienta
eficaz y eficiente para acelerar el andlisis estructural basado en MEF, ofreciendo predicciones
inmediatas con una precision adecuada para muchas tareas de disefio exploratorio y cribado.
Las limitaciones sefialadas delimitan un camino claro de mejora que permitira, con la incorpo-
racion de validacion experimental y mayor complejidad en los datos, trasladar la metodologia
a escenarios industriales reales.
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7.2 Conclusiones personales

En este trabajo he logrado demostrar la viabilidad de integrar simulacién numérica y aprendi-
zaje automatico para la prediccion rapida del comportamiento estructural de vigas. El proceso
me ha permitido familiarizarme con la generacion automatizada de modelos MEF (HyperMesh
/ OptiStruct), la extraccidon de resultados con PyNastran y el entrenamiento de modelos pre-
dictivos (HGBR y redes neuronales). Personalmente, el mayor aprendizaje ha sido compren-
der la importancia del feature engineering fisico-informado para obtener modelos robustos y
generalizables. Este proyecto me ha proporcionado competencias practicas y metodolégicas
que pienso aplicar en futuros proyectos.
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Capitulo 8. FUTURAS LINEAS DE TRABAJO

El presente trabajo ha demostrado la viabilidad de aplicar técnicas de Machine Learning al
analisis estructural, utilizando datos generados mediante simulaciones por el Método de los
Elementos Finitos (MEF). A pesar de que el estudio se ha centrado en un caso muy con-
creto el comportamiento de vigas 2D bajo distintas condiciones geométricas, materiales y de
contorno, los resultados obtenidos abren multiples vias de desarrollo y mejora, tanto a nivel
metodoldgico como de aplicacién practica.

8.1 Ampliaciéon del dominio estructural
Una primera linea de trabajo consiste en extender el enfoque actual hacia otros tipos de
elementos estructurales mas complejos:
* Vigas tridimensionales y porticos: incorporar grados de libertad en las tres direcciones
espaciales, asi como los efectos de flexion, torsion y cortante combinados.

» Placas y laminas: emplear elementos de tipo CQUAD4 o CTRIA3 para modelar estructuras
bidimensionales y estudiar tensiones en membrana y flexion.

» Sélidos 3D: extender el entrenamiento a modelos volumétricos, permitiendo predecir
campos de tensiones o desplazamientos locales en piezas reales.
8.2 Incremento de la complejidad del modelo de datos
El dataset actual se ha generado mediante modelos sintéticos con hip6tesis lineales y condi-
ciones de contorno simples. Futuros desarrollos podrian considerar:
» Materiales no lineales (plasticos, compuestos o viscoelasticos).
» Cargas dinamicas o térmicas, explorando el comportamiento temporal de la estructura.
« Interacciones entre elementos, permitiendo representar estructuras completas y en-
samblajes.
8.3 Mejoras en el modelado y entrenamiento

En el ambito del aprendizaje automatico, existen multiples vias de mejora:

» Optimizacién de hiperparametros mediante grid search o algoritmos bayesianos.

* Modelos hibridos Fisico—Informados (Physics-Informed Neural Networks, PINNs) que
integren directamente las ecuaciones del MEF en la funcién de pérdida.

* Redes neuronales convolucionales o graficas (GNNs), capaces de aprender directa-
mente de la malla de elementos finitos sin necesidad de un preprocesado manual.

+ Aumento del dataset mediante técnicas de generaciéon automatica y validacion cruzada
mas exhaustiva.
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8.4 Despliegue y usabilidad de la herramienta

La aplicacion Alabeam, desarrollada en Streamlit, representa un primer paso hacia la integra-
cion de modelos predictivos en herramientas accesibles para ingenieros. En el futuro podrian
implementarse:

» Un entorno web mas robusto, desplegado en servidor propio 0 en contenedor Docker,
que evite las limitaciones de la versién gratuita.

* Un moédulo de exportacién automatica a software CAD/CAE.

» Una interfaz mas avanzada, que permita personalizar geometrias, condiciones de con-
torno y materiales, ademds de mostrar resultados visuales del campo de desplazamien-
tos o tensiones.

8.5 Aplicacion industrial y validacion experimental

Finalmente, seria deseable realizar una validacién experimental o comparativa frente a resul-
tados reales 0 modelos de alta fidelidad, evaluando la precision de los modelos de aprendizaje
automatico en contextos industriales. Esta fase permitiria medir el impacto real de la meto-
dologia propuesta y sentar las bases para su incorporacién en el flujo de trabajo de disefo
estructural asistido por inteligencia artificial.

Conclusion

En conjunto, las lineas expuestas apuntan a la consolidaciéon de un paradigma emergente:
la fusién entre el analisis numérico tradicional y las técnicas de aprendizaje automatico. La
capacidad de los modelos de Machine Learning para aproximar comportamientos estructura-
les complejos de manera instantanea constituye una herramienta de enorme potencial para
acelerar procesos de simulacion, optimizacién y disefio en ingenieria estructural.
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Apéndice A. Presupuesto y costes estimados

Criterios de estimacion. El precio del equipo se ha estimado a partir del coste de mercado
de un portatil con especificaciones equivalentes (Intel Core i9, 32 GB de RAM y SSD de 1 TB),
tomando como referencia una configuracién media de gama alta y redondeando a una cifra
conservadora de 2200 €. Las licencias de Altair HyperMesh/OptiStruct se han considerado
a coste cero por tratarse de licencias académicas de estudiante. Las horas de ingenieria
(120 h) se han calculado por descomposicion de tareas:

« Definicion del espacio de disefio y scripting para generacion automatica de modelos.

» Preparacion y lanzamiento de simulaciones en OptiStruct.

 Postprocesado con PyNastran y depuracion de datos.

» Entrenamiento, validacion iterativa y analisis de errores.

* Integracién y pruebas de la interfaz AlaBeam.
La imputacién econémica de las horas de ingenieria se han valorado con una tarifa orientati-
va de 35 €/h. Se considera una incertidumbre razonable (+15—20 %) asociada a variaciones
de mercado. Se contempla la presentacién del trabajo en un congreso académico, incluyendo
inscripcion, viaje, alojamiento y dietas. El importe mostrado (875 €) es orientativo y represen-

ta un evento de ambito europeo. Esta partida queda sujeta a disponibilidad de financiacion
institucional y puede reducirse en caso de colaboracion de algun departamento.

La siguiente tabla resume los costes estimados del desarrollo del proyecto.

Tabla A.1. Presupuesto y costes estimados. La asistencia a congreso se contempla como partida opcional

Concepto Detalle Coste
Portatil (equipo de cémputo) Intel Core i9, 32 GB RAM, SSD 1 TB 2200 €
Licencia HyperMesh (estudiante) Uso académico 0€
Python + librerias sk-learn, TF, PyNastran, Streamlit 0€
Horas de célculo ~24 h (local) n/a
Horas de ingenieria Desarrollo y validacion (120 h x 35 €/h) 4.200 €
Asistencia a congreso (opcional) Inscripcion, viaje, alojamiento y dietas 875 €
Total 7275 €
Notas.

+ Si el equipo ya estaba disponible, el coste puede imputarse como amortizacién propor-
cional a la duracion del TFM, en cuyo caso el importe directo seria menor.

» No se imputan costes energéticos al tratarse de ejecucién local en entorno académico.
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Apéndice B. Repositorio y codigo fuente

Este apéndice recopila la organizacién del repositorio y las rutas de los codigos (scripts)
principales para las herramientas disenadas para el desarrollo de los modelos y la interfaz
grafica Alabeam.

B.1 Herramientas para generar los modelos

Este repositorio recoge todos los scripts (herramientas) que se han creado para realizar el
entrenamiento de los modelos, desde la generacion del dataset hasta la predicciéon de los
mismos. El repositorio se puede encontrar en la referencia [27]

1.Generador_Modelos/
generador_HM. tcl
generador_casos.py

2.Preprocessing/
Extraccion_0P2.py
preprocessing.py

3.Train/
Dataset_VO1l_total.csv
HGBR_training.py
NN_training.py

4.Predict/
HGBR_predict.py
NN_predict.py

config.py

requirements . txt

Notas de uso

 Sistema de unidades mm, N y MPa en todos los scripts.

* Los scripts que generan datos fijan una semilla aleatoria fijaga en config.py

Referencia rapida a scripts

En la TablaB.1] se muestran los ficheros del repositorio y la descripcién de cada uno de ellos.

Tabla B.1. Descripcion del cédigo del repositorio

ruta propdsito
1.Generador_Modelos/generador_casos.py genera el CSV maestro de combinaciones
1.Generador_Modelos/generador_HM.tcl crea modelos .hm y exporta .fem a partir del CSV
2.Preprocessing/Extraccion_0P2.py lee OP2 y agrega desplazamiento y tension maximos
2.Preprocessing/preprocessing.py célculo de rasgos fisico-informados y limpieza
3.Train/HGBR_training.py entrenamiento y validacion del modelo HGBR
3.Train/NN_training.py entrenamiento y validacion de la red neuronal

4 .Predict/HGBR_predict.py prediccion con el modelo HGBR final

4 .Predict/NN_predict.py
config.py

prediccion con la red neuronal final
constantes compartidas y utilidades
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B.2 Repositorio de la aplicacion Alabeam

A continuacién se documenta la estructura y contenidos del repositorio de la aplicacién Ala-
Beam, la cual integra la interfaz grafica desarrollada en Streamlit con los modelos de pre-
diccién (HGBR y red neuronal) y las utilidades de preprocesado. Este repositorio se puede
encontrar en la referencia [29]

Estructura del repositorio

Alabeam/
Alabeam_logo.png
README . md
alabeam.py % App principal (Streamlit)
config.py % Configuracidén general
models/

model _max_displacement_HGB. joblib

model _max_stress_HGB.joblib
models_neural/

feature_columns_neuralnet.csv

model _max_displacement_neuralnet.keras

model _max_stress_neuralnet.keras

scaler_displacement_neuralnet. joblib

scaler_stress_neuralnet. joblib
preprocessing.py % Preprocesado
requirements. txt

Notas generales de uso
+ Todos los scripts y modelos trabajan con el sistema de unidades mm, N y MPa.
+ La semilla aleatoria para generacién reproducible de datos esta definida en config.py.

» Los modelos binarios se encuentran en models/ (HGBR) y models_neural/ (red neu-
ronal y escaladores).

« Para evitar problemas de compatibilidad, se recomienda crear un entorno virtual (conda
o venv) e instalar las dependencias con pip install -r requirements.txt.
Instrucciones de ejecucion rapida
1. Crear un entorno e instalar dependencias.
2. Ejecutar la aplicacién localmente:

streamlit run alabeam.py

3. Acceder en el navegador a http://localhost:8501 (0 a la URL de Streamlit Cloud si
esta desplegado).
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Referencia rapida a scripts y ficheros

Tabla B.2. indice rapido de ficheros principales del repositorio Alabeam

Ruta / fichero Propdsito / descripcion

alabeam.py Script principal de la interfaz grafica (Streamlit). Gestiona la
carga de modelos, el preprocesado de entradas y la
visualizacién de resultados.

config.py Archivo de configuracién con constantes globales (unidades,
semilla, rutas a modelos, nombres de columnas, parametros
de normalizacion).

preprocessing.py Implementa las transformaciones de feature engineering
usadas tanto en entrenamiento como en prediccion
(escalares, variables derivadas de la geometria de vigas,
encoding de secciones/materiales).

models/model_max_displacement_HGB.jo Modelo HGBR entrenado para max_displacement.

blib

models/model_max_stress_HGB.joblib Modelo HGBR entrenado para max_stress.

models_neural/feature_columns_neural Lista de columnas/orden que requiere la red neuronal para

net.csv las entradas.

models_neural/model_max_displacement| Red neuronal entrenada para desplazamiento méaximo

_neuralnet.keras (modelo Keras).

models_neural/model_max_stress_neural Red neuronal entrenada para tension maxima (modelo

Inet.keras Keras).

models_neural/scaler_*.joblib Objetos scaler usados para normalizar/denormalizar
entradas y salidas en la prediccion.

requirements.txt Dependencias del proyecto (Streamlit, scikit-learn, joblib,

tensorflow/keras, pandas, numpy, etc.).

Consideraciones de reproducibilidad y despliegue

» Mantener sincronizados feature_columns_neuralnet.csv y el orden de columnas
esperado por los modelos. Cualquier cambio en el preprocesado debe versionarse con-
juntamente con los modelos.

 Para despliegue publico se ha usado Streamlit Cloud (plan gratuito). En este entorno la
aplicacién puede entrar en reposo tras periodos de inactividad; consulte la seccidén de
despliegue del TFM para mas detalles.

* Incluir en el repositorio un ejemplo minimo de entrada (CSV de ejemplo) y tests unitarios
basicos para las transformaciones criticas.
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Apéndice C. Estructura de un fichero .fem (Op-
tistruct & HyperMesh)

Este apéndice describe la estructura y las principales cartas (bulk data entries) de un modelo
de viga resuelto con OptiStruct a partir de un fichero . fem exportado desde HyperMesh. Se
usa como referencia el caso Beam_TUBE_1000mm_simple_clamped_Titanium.fem. La infor-
macion mostrada en este apéndice ha sido extraida de la documentacién oficial de Altair (ver
referencia [22]).

Estructura general del .fem

Un fichero . fem de OptiStruct sigue la organizacién clasica tipo NASTRAN:

» Case Control: define el tipo de analisis, casos de carga (subcase) y salidas.
« Bulk Data: contiene la malla (nodos, elementos), propiedades, materiales, cargas y
restricciones.
La informacion de los modelos se define mediante tarjetas (cards) preestablecidas por OptiS-
truct, las cuales permiten describir una amplia variedad de configuraciones y tipos de analisis.
En el modelo analizado, el Case Control es:

SUBCASE 1

LABEL Static_Analysis
ANALYSIS STATICS

SPC = 1

LOAD = 2

DISPLACEMENT (OUTPUT2,) = ALL
SPCFORCE(,QUTPUT2,,,) = ALL
STRESS(0P2,ALL) = ALL

Esto define un analisis estatico (SUBCASE 1) con:

» Conjunto de restricciones SPC=1.
» Conjunto de cargas LOAD=2.

+ Solicitud de salidas: desplazamientos, fuerzas de SPC y tensiones a ficheros binarios
OP2/OUTPUT2.

Malla: nodos (GRID) y elementos (CBEAM)

La malla es unidimensional a lo largo del eje X, con 101 nodos (Omm a 1000 mm) que
discretizan la viga en 100 elementos:

GRID 1 0.0 0.0 0.0

GRID 101 1000.0 0.0 0.0
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Los elementos empleados son CBEAM (elementos viga con seccion y propiedad asociadas).
Cada tarjeta CBEAM referencia una propiedad (PID), dos nodos extremos y un vector de orien-
tacién local (v) que fija el eje local de la seccién:

CBEAM 1 1 1 20.0 0.0 1.0

CBEAM 100 1 100 1010.0 0.0 1.0

Notas: (1) PID=1 vincula cada elemento a la propiedad de viga (seccién y material). (2) El
vector de orientacién no necesita ser unitario; sélo define la direccion del eje local (p. €j.,
hacia Z) para rotar la seccién.

Propiedad de viga: PBEAML (seccion tubular)

La propiedad de los elementos CBEAM se define con PBEAML usando una seccién TUBE (tubo
circular), indicando geometria:

PBEAML 1 1 TUBE +
+ 73.56 60.27 0.0

donde PID=1 y MID=1 (material asociado). Para TUBE, los parametros corresponden a radio
exterior y radio interior (en mm), por lo que aqui se modela un tubo con Dey; = 73.56 mm y
Dint = 60.27 mm.

Material: MAT1 (is6tropo lineal)

El material isétropo se define con MAT1 (mddulo elastico E, coeficiente de Poisson v, densidad
p, etc.):

MAT1 1 112000.0 0.32 4.5-6

En el caso de esta viga se emplea titanio cuyas propiedades son: £ ~ 112 GPa, v = 0.32,
p ~ 4.5 x 1076 kg/mm? (densidad ~ 4500 kg/m?). Nota de unidades: el modelo emplea
millimetros (mm) y Newton (N), por lo que E se expresa en MPa.

Condiciones de contorno: SPC (simple y empotrado)

Las restricciones SPC fijan grados de libertad (DOF) en nodos especificos. En el modelo:

SPC 1 1 123 0.0
SPC 1 101 123456 0.0

* En el nodo 1 se fijan traslaciones (1, 2, 3) y se dejan libres las rotaciones (4, 5, 6) repre-
sentando un apoyo simple.

* En el nodo 101 se fijan todos los DOF (1-6) reflejando un empotramiento.

Cargas: LOAD/MOMENT

El caso de carga referencia LOAD=2, que agrupa las tarjetas de carga del bulk data. En este
ejemplo se aplica un momento nodal:
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MOMENT 2 51 0 1.0 0.0 0.0 -3.537+7

Este momento actla en el nodo 51 (aproximadamente en el centro de la viga), con magnitud y
direccion dadas por los campos de la tarjeta (momento concentrado en un sistema cartesiano
global, CID=0). Esta carga produce un estado de flexién representativo para la validacion.

Resumen del modelo empleado
* Longitud: 1000 mm (101 nodos, 100 elementos CBEAM).
» Seccidn: tubular (PBEAML/TUBE) CON 7yt = 73.56 mmy ripy = 60.27 mm.
« Material: MAT1 (Titanio) con F = 112 GPa, v = 0.32, p = 4.5 x 106 kg/mm?.
« Apoyos: nodo 1 — apoyo simple (123); nodo 101 — empotramiento (123456).
+ Carga: MOMENT en nodo 51, agrupado en LOAD=2.

+ Analisis: estatico lineal (ANALYSIS STATICS), con salidas de desplazamientos y ten-
siones.

Buenas practicas al generar .fem desde HyperMesh
« Verificar unidades coherentes (mm—-N—-MPa) para GRID, PBEAML, MAT1 y cargas.

» Asegurar una orientacion de viga (CBEAM vector) estable: evita alinearla con el eje de la
viga para no degenerar el sistema local.

« Comprobar que PID y MID estan correctamente enlazados (CBEAM — PBEAML — MAT1).

» Documentar casos de carga y SPC con identificadores Unicos, especialmente cuando
se generen lotes sintéticos.

+ Solicitar salidas (DISPLACEMENT, STRESS, etc.) acordes con el postproceso (por ejemplo,
extraccion con PyNastran).
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